М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Sdhinkj
Sdhinkj
06.03.2020 06:16 •  Геометрия

Впрямоугольном треугольнике авс угол с=90г ав=10см вс=5см.найдите углы на которые высота сн делит угол с сделайте треугольник и там объяснить.

👇
Ответ:
Amerilove57
Amerilove57
06.03.2020
.............................................
Впрямоугольном треугольнике авс угол с=90г ав=10см вс=5см.найдите углы на которые высота сн делит уг
4,6(53 оценок)
Открыть все ответы
Ответ:
Demongirl1
Demongirl1
06.03.2020

Задача 2.

\angle{AOD} = \frac{\pi}{3} = 60^{o}

Задача 3.

Проекциями прямых параллельных сторонам исходного параллелограмма будут прямые, проходящие через т. пересечения диагоналей и середины сторон у параллелограмма проекции

Объяснение:

Дано

АВСД - прямоугольник

АВ = 6 см

АД = 2√3 см

Найти

уг. м/ду АС и ВД

Решение

Очевидно, что АС и ВД - диагонали прямоугольника.

Обозначим т. пересечения как т. О

Тогда уг.АОД - искомый угол между диагоналями.

Обозначим

{\angle AOD} = \alpha

По св-вам прямоугольника, его диагонали равны и в т. пересечения делятся пополам. Т.е.

АО = ОС = ВО = ОД

По Т. Пифагора можно найти диагонали:

ВД² = АВ² + АД²

BD = \sqrt{AB^2 + AD^2} \\ BD = \sqrt{6^2 + 2\sqrt(3)^2}

BD = \sqrt{AB^2 + AD^2} \\ BD = \sqrt{6^2 + 2\sqrt(3)^2} = \sqrt{36 + 4 \cdot3} \\ BD = \sqrt{48} = \sqrt{16\cdot3} = 4 \sqrt{3}

Соответственно

АС = ВД = 4√3

Рассмотрим тогда треугольник АОД, он равнобедренный, т.к.

AO = OD = \frac{4\sqrt3}{2} = 2 \sqrt{3}

Так же 2√3 равна и сторона АД нашего прямоугольника.

То есть - мы получаем, что

АО = ОД = АД = 2√3

Следовательно - ∆АОД равносторонний,

а это означает, что искомый угол AOД

\alpha = \angle{AOD} = \frac{\pi}{3} = 60^{o}

Для особо дотошных:

По Т. косинусов имеем:

\small {AD^2=AO^2+OD^2-AO\cdot OD \cdot 2\cos{ \alpha}}

Отсюда

{\cos{ \alpha} = \frac {AO^2+OD^2-AD^2}{2 \cdot AO\cdot OD }} \\ {\cos{ \alpha} = \frac {(2 \sqrt{3})^2 +(2 \sqrt{3})^2 -(2 \sqrt{3})^2 }{2 \cdot 2 \sqrt{3} \cdot 2 \sqrt{3} }} \\ { \cos \alpha = \frac {12 + 12 - 12}{2 \cdot12}} = \frac{12}{24} = \frac{1}{2} \\ \cos \alpha = \frac{1}{2} = \alpha = \frac{\pi}{3} = 60^{o}

4,5(13 оценок)
Ответ:
bdhdt
bdhdt
06.03.2020
Пусть в ромбе ABCD углы B и D равны 60 градусам (противоположные углы ромба равны). Рассмотрим треугольник ABC. Он равнобедренный, так как AB=BC, угол при вершине равен 60 градусам. Значит, 2 других угла также равны 60 градусам и треугольник ABC является равносторонним. Тогда AC=AB=BC=3 см. Высота ромба AH равна высоте равностороннего треугольника AH со стороной 3см. Площадь равностороннего треугольника со стороной a равна √3a²/4, значит, площадь треугольника ABC равна 9√3/4. По формуле площади, S=1/2ah, h=2S/a, где h - высота треугольника, a - сторона, к которой проведена высота, S - площадь треугольника. Значит, AH=(9√3/2)/3=3√3/2 см.
4,5(83 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ