Ab и cd. -два взаимно перпендикулярных диаметра окружности. хорда cb продолжена за точку b на отрезок be, равный cb. каково взаимоположние прямой de и окружности ?
DE касательная т.к. O центр окружности . CO =OD и CB = BE( по условию),значит OB средняя линия в треугвольнике CDE OB || DE (AB || DE) ; <(AB ,CD) =90 ° ⇒<( DE ,CD =90° ,а CD диаметр.
Проведем МА⊥α и МВ⊥β. МА = 12 - расстояние от М до α, МВ = 16 - расстояние от М до β.
Пусть плоскость АМВ пересекает ребро двугранного угла - прямую а - в точке С. МА⊥α, а⊂α, значит МА⊥а. МВ⊥β, а⊂β, значит МВ⊥а. Так как прямая а перпендикулярна двум пересекающимся прямым плоскости АМВ, то она перпендикулярна этой плоскости, следовательно она перпендикулярна каждой прямой, лежащей в этой плоскости, ⇒ а⊥АС, а⊥ВС, ⇒∠АСВ = 90° - линейный угол двугранного угла; а⊥МС, ⇒ МС - искомое расстояние.
CO =OD и CB = BE( по условию),значит
OB средняя линия в треугвольнике CDE
OB || DE (AB || DE) ; <(AB ,CD) =90 ° ⇒<( DE ,CD =90° ,а CD диаметр.