1) AB =c=7 , BC=a=3√3 , sin∠A= (3√3)/14. --- ∠C -? По теореме синусов : c/sin∠C=a/sin∠A || AB/sin∠C=BC/sin∠A|| ; 7/sin∠C =3√3/(3√3)/14))⇒7/sin∠C =14 ⇒∠C =30° или ∠C =150°. ∠A < 30° (не может быть >150°) т.к. (3√3)/14 <1/2 .
2) OA=OB =OC , ∠AOC =100° . --- ∠B -? По условию задачи OA=OB =OC⇒ точка O является центром описанной окружности и ∠AOC центральный угол. Градусная мера малой дуги AC равно 100°. ∠B =(1/2)*(дугаAC) =50° (как вписанный угол).
отсюда 15см