y=7-5x
Объяснение:
Мы имеем общее уравнение прямой: y=kx-b. Зная свойства параллельных прямых, мы можем сказать, что у них равны коэффициенты перед х (то есть k).
Тогда, исходя из данного уравнения прямой: 5x+y-1=0, запишем уравнение в общем виде: y=1-5x и видим, что k=-5, тогда в уравнении прямой, параллельной данной, k тоже равно -5, и, имея значения х и у (то есть, значения в точке, через которую прямая проходит), записываем уравнение: y=kx+b => y=-5x+b и поставляем значения точки m: -5*1+b=2.
Теперь нам нужно найти значение b, решив полученное уравнение: b=2+5=7.
Итак, нам известно и b, и k, мы можем записать общее уравнение прямой, подставив получившиеся значения: y=7-5x.
Дано:
∆АВС - прямоугольный.
ВЕ - биссектриса.
∠А = 30°
ВЕ = 6 см
Найти:
∠ВЕА; СЕ; АС
Решение.
Сумма углов прямоугольного треугольника равна 90°
=> ∠В = 90 - 30 = 60°
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> ВС = 1/2АВ
∠ЕВА = ∠ЕВС = 60 ÷ 2 = 30° (т.к. ВЕ - биссектриса)
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> СЕ = 1/2ВЕ = 6 ÷ 2 = 3 см.
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠ВЕС = 90 - 30 = 60°
СУММА СМЕЖНЫХ УГЛОВ РАВНА 180°
=> ∠ВЕА = 180 - 60 = 120°
∠В = ∠А = 30°
=> ∆АЕВ - равнобедренный.
=> ЕВ = ЕА = 6 см, по свойству равнобедренного треугольника.
СА = 3 + 6 = 9 см
ответ: 120°; 9 см; 3 см.
Отсюда периметр х + х + (х + 9) = 45
3х = 36
х = 12
Боковая сторона равна 12 см