Решите с полным оформлением. у равнобедренного треугольника угол равен 120°, а сторона против него равна 2. в треугольник вписана окружность. и вокруг него описана окружность. найдите расстояние между их центрами.
У угла две стороны. Если есть и третья сторона, то данная фигура - треугольник. Параллельные плоскости α и β рассечены плоскостью треугольника ВАС . Если две параллельные плоскости пересечены третьей. то линии их пересечения параллельны. А₁В₁|| А₂В₂. Параллельные плоскости рассекают стороны угла на пропорциональные части. В треугольниках АА₁В₁ и АА₂В₂ углы равны - один общий при А и по два соответственных при параллельных прямых и секущих (стороны угла). Следовательно, эти треугольники подобны. Из их подобия следует отношение АА₂:АА₁=АВ₂:АВ₁ 6:АА₁=3:2 3АА₁=12 АА1=12:3=4 см
Площадь треугольника равна половине произведения его высоты на сторону, к которой проведена. Сторона, к которой проведена высота, равна 3+12=15 м. Высоту нужно найти. Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒ h²=3*12=36 h=√36=6 (м) Ѕ=h*a:2 S=6*15:2=45 м² Периметр - сумма всех сторон многоугольника. В данном случае сумма длин катетов и гипотенузы: Р=a+b+c а=√(3*15)=3√5 м b=√(12*15)=6√5 м Р=15+9√5 (м) Катеты можно найти и по т. Пифагора, затем найти площадь половиной их произведения.
решение представлено на фото