1.существует ли треугольник, в котором: а) стороны равны 10 см, 15 см и 25 см; б) стороны относятся как 3: 5: 10; в) углы равны 46°, 64° и 80°; г) углы относятся как 3: 5: 10.ответы поясните. 2.из точки а к прямой bc проведены перпендикуляр ab и наклонная ac. определите длину наклонной, если угол между перпендикуляром и наклонной составляет 30°, а проекция наклонной равна 8 см. 3.задан рисунок: на рисунке: oa=ob; bd=ac. точка e – точка пересечения прямых ad и bc. докажите, что oe – биссектриса угла doc.указание: для решения необходимо воспользоваться тремя различными признаками равенства для различных пар треугольников.
Трапеция - четырехугольник. В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.
Сумма длин боковых сторон данной трапеции равна сумме оснований и равна ее полупериметру.
ВС+АД=АВ+СД=120:2=60
Площадь трапеции равна произведению ее высоты на полусумму оснований ( среднюю линию)
Средняя линия равна (АД+ВС):2=30
ВН и СК - высоты трапеции.
Высоту ВН трапеции найдем, разделив площадь на полусумму оснований
ВН= 540*30=18
Трапеция равнобедренная ⇒ АН=КД
Из прямоугольного треугольника АВН найдем АН:
АН=√(30²-18²)=24
ВС+НК+АН+КД=60
ВС=НК; АН=ДК
2 ВС+2*24=60
2 ВС=12
ВС=6
Треугольники, образованные диагоналями и основаниями, подобны.
Сумма их высот равна высоте трапеции =18
Пусть высота меньшего х, высота большего - 18-х
Тогда ВС:АД=х:(18-х)
6:(6+48)=х:(18-х)
Решив пропорцию, получим высоту меньшего треугольника 1,8.
Это и есть искомое расстояние.