М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Vovan3256
Vovan3256
09.12.2022 19:50 •  Геометрия

Биссектриса угла а прямоугольника авсд делит вс на части 2 см и 6 см. найдите периметр прямоугольника.

👇
Ответ:
mikhalyukmahem
mikhalyukmahem
09.12.2022
ВС=6+2=8 АД=ВС=8(т.к. прямоугольник  имеет свойства параллелограмма(противоположные стороны равны)) Точка деления ВС , пусть будет М Треугольник АВМ: угол А=90:2=45(т.к. АМ-биссектриса) Угол В в треугольнике АВМ=90(прямоугольник) Угол М в треугольнике АВМ равен М=180-(90+45)=45 Треугольник АВМ равнобедренный, из этого следует что ВМ=АВ=6 Р=(8+6)x2=28
4,5(11 оценок)
Открыть все ответы
Ответ:
diarryfokks
diarryfokks
09.12.2022
Прямые АВ и CD не параллельные, то есть пересекающиеся.                                                                                                    Дано:  угол ABC =                                                                                                     угол BCD =                                                                                                                                                                                                      Д-ть АВ не параллельно CD                                                    Решение1) Предположим, что прямые АВ и СD параллельны. Тогда угол АВС = углу BCD =  (как при параллельных прямых АВ и CD  и секущей BC)2) Так как сумма углов в треугольнике равна  (по теореме о сумме углов в треугольнике), мы приходим к противоречию с первым пунктом моего решения так как угол СВD и угол ВСD в сумме уже дают 3) Мы пришли к противоречию, значит наше предположение не верно, и значит прямая АВ не параллельна CD. Ч.т.
4,8(34 оценок)
Ответ:
Lerika51640
Lerika51640
09.12.2022
ΔABC; медианы AA_1 и BB_1; пересекаются в точке G. Через A_1 проводим прямую, параллельную BB_1, пересекающую AC в точке D.
Угол ACB пересекается параллельными прямыми⇒по теореме о пропорциональных отрезках B_1D:DC=BA_1:A_1C=1:1⇒B_1D=DC⇒AB_1=2B_1D.

Угол CAA_1 пересекается параллельными прямыми⇒по теореме о пропорциональных отрезках 
AG:GA_1=AB_1:B_1D=2:1.

Таким образом, медиана BB_1 в точке пересечения разделила медиану AA_1 в отношении 2 к 1, считая от вершины. Поскольку мы взяли две произвольные медианы, доказано, что каждая из них разделит каждую в отношении 2 к 1. Поэтому во-первых они пересекаются в одной точке, а во-вторых, делятся точкой пересечения в отношении 2 к 1, считая от вершины.

Замечание для продвинутых (21+)))
Знающие теорему Чевы вопрос о том, что медианы пересекаются в одной точке, не задают. А знающие к тому же теорему Менелая, не спрашивают и про отношение 2 к 1. А знающие теорему Ван-Обеля   просто умирают при этом со смеху, потому что для них решение прокручивается устно в голове за 0,5 секунды максимум 

 
4,4(14 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ