1. Так как 15 < 12 + 9, треугольник с такими сторонами существует. Сравним квадрат большей стороны с суммой квадратов двух других сторон: 15² и 12² + 9² 225 и 144 + 81 225 = 225, значит по теореме, обратной теореме Пифагора, треугольник ответ: в) прямоугольный.
2. Коэффициент подобия: k = 2/5. Площади подобных треугольников относятся как квадрат коэффициента подобия: S₁ : S₂ = 4 : 25 8 : S₂ = 4 : 25 S₂ = 25 · 8 : 4 = 50 ответ: Нет правильного ответа.
3. АВ = ВС = (Рabc - AC) / 2 = (32 - 12) / 2 = 20 / 2 = 10 см Найдем площадь по формуле Герона (р - полупериметр): Sabc = √(p·(p - AB)·(p - BC)·(p - AC)) Sabc = √(16 · 6 · 6 · 4) = 4 · 6 · 2 = 48 см² Из другой формулы площади найдем радиус вписанной окружности: Sabc = p·r r = Sabc / p = 48 / 16 = 3 см ответ: б) 3 см
4. Проведем радиусы в точки касания. Отрезки касательных, проведенных из одной точки, равны: АК = АМ = 5 см, ВК = ВЕ = 12 см СМОЕ - квадрат со стороной, равной радиусу вписанной окружности, который обозначим r. По теореме Пифагора составим уравнение: (5 + 12)² = (5 + r)² + (12 + r)² 17² = 25 + 10r + r² + 144 + 24r + r² 2r² + 34r + 169 = 289 r² + 17r - 60 = 0 D = 289 + 240 = 529 r = (- 17 + 23) / 2 = 6 / 2 = 3 Второй корень отрицательный, не подходит по смыслу задачи. АС = 5 + 3 = 8 см ВС = 12 + 3 = 15 см ответ: г) 8 см и 15 см.
5. Центр окружности, описанной около прямоугольника, лежит в точке пересечения его диагоналей, значит радиус равен половине диагонали, которую находим по теореме Пифагора: r = d/2 = √(a² + k²) / 2
Мыс Челюскина, мыс Дежнева мыс в Анадырском заливе, Россия; мыс в Тауйской губе, Россия;
пролив между Новой Землей и полуостровом Таймыр носит имя Бориса Вилькицкого, острова в Карском море названы именами полярных исследователей Шокальского, Сибирякова, Неупокоева, Исаченко, Воронина… Среди морей, названных именами известных географов Баренца и Беринга, появилось на географических картах море Лаптевых, которого не существовало на старых, дореволюционных картах. Оно было названо в честь замечательных исследователей Арктики Харитона Прокофьевича и Дмитрия Яковлевича Лаптевых, принимавших участие в Великой Северной экспедиции XVIII века. Именем Дмитрия Лаптева назван и пролив, соединяющий море Лаптевых с Восточно-Сибирским морем, а берегом Харитона Лаптева назвали северо-западное побережье Таймырского полуострова - от Пясинского залива до залива Таймырского. г. Кропоткин (Краснодарский край) - П. А. Кропоткин (князь, русский географ и геолог) , г. Лазарев (Хабаровский край) - М. П. Лазарев (русский путешественник) , г. Макаров (Сахалинская обл. ) - С. О. Макаров (русский флотоводец, океанограф) , пос. Пояркова (Амурская обл. ) - В. Д. Поярков (русский землепроходец) , пос. Пржевальское (Смоленская обл. ) - Н. М. Пржевальский (русский путешественник) , г. Хабаровск, станция Ерофей Павлович (Амурская обл. ) - Ерофей Павлович Хабаров (русский землепроходец) , г. Шелехов (Шелихов) (Иркутская обл. ) - Г. И. Шелихов - русский путешественник;
СМОТРИТЕ, ЭТО ЛЕГКО. Т.к. в задаче не оговорено, какой из катетов дан, прилежащий к углу А или противолежащий, то надо рассмотреть оба случая.
1. Пусть АС =9, по теореме Пифагора ВС =√ 12²-9² = 3√7, тогда sin∠А =3√7/12=√7/4; cos∠А=9/12=3/4, tg∠А=√7/4:3/4=√7/3, а
ctg∠А=1/tg∠А=3/√7=3√7/7
2. Пусть теперь ВС =9, тогда АС =3√7
sin∠А =9/12=3/4; cos∠А=3√7/12=√7/4, tg∠А=3/√7=3√7/7
ctg∠А=√7/4:3/4=√7/3
Удачи!