теорема 1. признак параллельности прямых
если внутренние накрест лежащие углы равны, то прямые параллельны.
если соответственные углы равны, то прямые параллельны.если сумма внутренних односторонних углов равна 180, то прямые параллельны.следствие: две прямые, перпендикулярные третьей, параллельны. свойства параллельных прямыхтеорема 2. две прямые, параллельные третьей, параллельны.
это свойство называется транзитивностью параллельности прямых.
теорема 3. через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной.
теорема 4. если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны.
на основании этой теоремы легко обосновываются следующие свойства.
если две параллельные прямые пересечены третьей прямой, то соответствующие углы равны.если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180. следствие если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.Нажмите на ссылку чтобы присоединиться к конференции:
https://meet.jit.si/
Просто хотите набрать номер на Вашем телефоне?
Номер: +1.512.647.1431 ПИН: 2039447085#
Щелкните на эту ссылку, чтобы просмотреть телефонные номера для этой конференции
https://meet.jit.si/static/dialInInfo.html?room=
Объяснение:
Нажмите на ссылку чтобы присоединиться к конференции:
https://meet.jit.si/
Просто хотите набрать номер на Вашем телефоне?
Номер: +1.512.647.1431 ПИН: 2039447085#
Щелкните на эту ссылку, чтобы просмотреть телефонные номера для этой конференции
https://meet.jit.si/static/dialInInfo.html?room=
S=60*80/2=4800/2=2400