Радиус окружности, описанной около равнобедренного треугольника с углом 120°, равен см. Найдите стороны треугольника
Объяснение:
ΔАВС, ∠В=120°, О-центр описанной окружности. Центр описанной окружности лежит в точке пересечения серединных перпендикуляров к его сторонам.
Пусть ВН⊥АС, О∈ВН., ОВ=ОА=6√3 см.
По теореме синусов( отношение стороны треугольника к синусу противолежащего угла равно двум радиусам описанной окружности) : ,
, АС=12√3*
=18 (см).
По свойству высоты равнобедренного треугольника ∠АВН=∠НВС=60°, АН=НС=9 см.
ΔАВН-прямоугольный , sin 60°= , АВ=6√3 см ⇒ВС=6√3 см.
Диаметр равен высоте CH тре-ка
S=1/2CB*CH=1/2*8*10=40
Тре-к АНВ прямоугольный, зн. найдём боковую сторону по теореме Пифагора
АН^2=100+16=116
AH= корень из 116 или 2 корня из 29