Площадь боковой поверхности треугольной призмы состоит из суммы площадей трех ее граней, которые являются прямоугольниками. Площадь одной грани будет равна 72/3=-24 см. В призме высота равна ребру, т.е. одной из сторон прямоугольной грани и равна 6 см. по условию задачи. Найдем длину стороны основания, которая является и стороной грани призмы из формулы площади прямоугольника ах6=24, т.е. сторона а = 4. Т.к. в основании правильной треугольной призмы лежит равнобедренный треугольник (все его стороны и углы равны), то можем вычислить его площадь
S= 1/2х4х4хsin60=8√3/2=4√3
Самарская область имеет достаточно развитую минерально-сырьевую базу. Запасы полезных ископаемых представлены углеводородным сырьем, широким разнообразием минерально-строительного сырья, отдельными видами горно-технического и горно-химического сырья, подземными водами, в том числе содержащими гидроминеральное сырье.,
Самарская область располагает большими запасами разнообразного минерально-строительного сырья промышленных категорий: строительным камнем, песчано-гравийным материалом, песками строительными и силикатными, кирпично-черепичным сырьем, гипсом и ангидритом, керамзитовым сырьем, аглопоритовыми глинами, стекольным сырьем, битумсодержащими породами, тугоплавкими глинами, цементным сырьем (глинистым сырьем, опоками). Запасы каменно-строительных материалов (карбонатных пород и щебня) являются крупнейшими в Поволжье.
S _ вершина пирамиды SO ┴ (ABC) , O∈(ABC).
V =1/3*S(ABC) *SO ---> ?
Если все боковые ребра пирамиды наклонены к плоскости основания под одинаковым углом (в данном случае α =30° ) , то высота пирамиды проходит через центр окружности , описанного около основания . Здесь этот центр O середина гипотенузы .
BA = BC/cosβ = a/cosβ ;
S(ABC) =1/2*BA*BC*sinβ = 1/2*a/cosβ*a*sinβ =1/2*a²*tqβ .
*** или S(ABC) =1/2*AC*BC =1/2*a*atqβ =1/2*a²*tqβ ***
SO = OB*tqα = 1/2*BA*tqα =1/2*a/cosβ*tqα ;
V =1/3*S(ABC) *SO = 1/3*1/2*a²*tqβ *1/2*a/cosβ*tqα ;
V = (1/12)a³*tqβ*tqα/cosβ . ***1/12*a³*sinβ*tqα/cos²β ***
При a =6 см ; β =60° ; α =30° получится :
V= (1/12)a³*tqβ*tqα/cosβ =(1/12)*6³*tq60°*tq30°/cos60° =(1/12)*6³ *2 =36 (см³) .
2) R =OA =OB = 10 см ; <AOB =2α =2*60° =120° ; <O₁CD = β =30° ;
(ABB₁A₁) | | OO₁
S(ABB₁A₁) ---> ?
ABB₁A₁ прямоугольник .
S = S(ABB₁A₁) = AB*BB₁ =AB*H ; AB _хорда на нижней основ;
Из ΔAOB : AB=2*(Rsinα) .
H = Rtqβ ;
S =AB*H=2*Rsinα*Rtqβ =2R²sinα*tqβ .
при R =10 см , α =60° , β =30° получится :
S =2R²sinα*tqβ =2*10²sin60°*tq30° = 2*10²*√3/2*1/√3 = 100 (см²) .
3) Дано: правильная пирамида FABC , F_вершина .
Доказать BF ┴ AC .
Пусть FO ┴ (ABC) , где O основание высоты FO, т.е. BO проекция ребра BF на плоскость треугольника ABC .
AC ┴ BM [ BM высота (медиана , биссектриса) ] ⇒AC ┴ BO ⇒AC ┴ BF (теорема трех перпендикуляров) .