В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Следовательно, основание АС делится на два равных отрезка АН и НС, и угол ВНС является прямым. Мы получаем два прямоугольных треугольника, у которых все три стороны равны: АВ = ВС, т. к. треугольник равнобедренный по условию; АН = НС, т. к. ВН - медиана; ВН - общая сторона По третьему признаку равенства треугольников (если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны) наши треугольники АВН и ВНС равны.
Тангенс угла - это ОТНОШЕНИЕ противолежащего катета к прилежащему.
tg (A) = a / b, тогда tg (A) = 12 / 15 = 0.8
tg (B) = b / a tg (B) = 15 / 12 = 1.25
В условии сказано "найдите их значения" - это имеется в виду не градусные значения острых углов, а тангенсы острых углов. Если вы все-таки хотите найти градусные значения углов, то либо ищите соответствие градусных мер углов и значений тангенса в таблицах Брадиса, либо нужно брать обратную тангенсу функцию - arctg арктангенс.
b=√((a/2)²+(√3a/2)²)=1/2√(4a²)=1/2*2a=a (b-сторона ромба)
Sромба=b²sinα=a²sinα
a²sinα=a²*√3/2 (0<α<π/2)
sinα=√3/2⇒α=60°
180°-α=180°-60°=120°
ответ:60° и 120°