По теореме:. Если прямая (ВС), не лежащая в данной плоскости (сечения), параллельна какой-нибудь прямой (МК), лежащей в этой плоскости, то она параллельна самой плоскости. Проведем МК║ВС и получим линию пересечения плоскостей грани и сечения.
На грани АDC теперь есть вторая точка, принадлежащая линии пересечения плоскости сечения и грани. Соединим их.S = √3 ед².
Объяснение:
Пусть диагонали трапеции пересекаются в точке О.
В равнобедренном треугольнике ВОС угол ВОС = 120°, как смежный с углом АОВ, который равен 60° по условию. Тогда ∠ОСВ = 30°, как угол при основании равнобедренного треугольника. ∠CAD = 30°, как накрест лежащий с ∠ОСВ = 30° при параллельных прямых AD и ВС и секущей АС.
В прямоугольном треугольнике АСН катет СН лежит против угла 30 градусов => АС = 2·СН. АН = √3. Тогда по Пифагору
(2·СН)² - СН² = АН² или 3·СН² = 3. => СН = 1 ед.
Отрезок АН равен полусумме оснований (свойство высоты, опущенной на большее основание равнобедренной трапеции, которая делит это основание на два отрезка, больший из которых равен полусумме оснований). Итак, полусумма оснований равна √3 (дано). Тогда площадь трапеции равна произведению полусуммы оснований на высоту, то есть: √3·1 = √3 ед².
АС и BD - диагонали трапеции, О - точка пересечения диагоналей.
Средняя линия l = (AD+BC)/2=11,7
AD+BC=23,4
Периметр Р=AD+BC+AB+CD=36
AB+CD=36-(AD+BC)=36-23,4=12,6
Рассмотрим ΔАОD и ΔВОС. Они подобны по трём углам (угол ВОС=АОD как вертикальные, OAD=BCO и CBO=ODA как накрест лежащие), следовательно можно составить отношения:
В ΔABD АО - биссектриса. Используя свойство биссектрис, получим:
В ΔACD DO - биссектриса, тогда
Но
Рассмотрим ΔABC. У него угол BAC=BCA, а значит треугольник равнобедренный и АВ=ВС=6,3
Т.к. AD+BC=23,4, тогда AD= 23,4-ВС=23,4-6,3=17,1
ответ: 17,1