Искомая площадь состоит из трех равных площадей треугольников, у которых есть высота - апофема боковой грани, нужно найти сторону основания. И тогда площадь боковой поверхности равна 3а*L/2, где а - сторона основания. Если соединить основание апофемы и и высоты пирамиды, получим проекцию апофемы на плоскость основания, и она равна (1/3) высоты треугольника, лежащего в основании. Зная апофему и угол между апофемой и высотой, найдем эту проекцию. Она равна L*sinα=а√3/2, отсюда сторона основания а =2L*sinα/√3=
2L*sinα*√3/3
Значит, площадь боковой поверхности равна (3*2L*sinα*√3/3)*L/2=
L²*√3sinα/ед. кв./
Отсюда находим основания:
- меньшее - (13 + 15)*1 /(1+3) = 28 / 4 = 7 см.
- большее - 7*3 = 21 см.
Площадь трапеции по 4 известным сторонам находится по формуле:
S = ((7+21)/2)*√(13²-((21-7)²+13²-15²)/(2(21-7))/(2(21-7))²) = 168 cм².