М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ерик12840
ерик12840
10.07.2022 12:36 •  Геометрия

Основания прямоугольной трапеции равны 6 и 3. боковая сторона,перпенидикулярная основаниям,равна 4. найдите вторую боковую сторону трапеции

👇
Ответ:
tanyatomeva81
tanyatomeva81
10.07.2022
Боковая сторона прямоугольной трапеции, которая не перпендикулярна основаниям, равна корню квадратному из суммы квадрата второй боковой стороны и квадрата разности оснований.
√(4² + (6 - 3)²) = √(4² + 3²) = √(16 + 9) = √25 = 5
ответ: 5.
4,5(54 оценок)
Ответ:
607156
607156
10.07.2022
Вот рисунок. Проведем перпендикуляр. Получится прямоугольник со сторонами 4 и 3. и треугольник с катетами 3 и 4. Из теоремы Пифагора находим гипотенузу треугольника она же сторона трапеции. 
3^{2} + 4^{2} = \sqrt{25}
ответ=5
Основания прямоугольной трапеции равны 6 и 3. боковая сторона,перпенидикулярная основаниям,равна 4.
4,6(96 оценок)
Открыть все ответы
Ответ:
Sasha670000
Sasha670000
10.07.2022

∠YAC - внешний угол, M - середина AC

∠YAX=∠MAX (AX - биссектриса ∠YAC)

∠YAX=∠MXA (накрест лежащие при XM||AB)

∠MAX=∠MXA => △XMA - равнобедренный, XM=MA

XM=MC, △XMC - равнобедренный => ∠XCA=∠MXC

∠XMA=2∠XCA (внешний угол равен сумме внутренних, не смежных с ним)

∠XMA=∠CAB=54 (накрест лежащие при XM||AB)

∠XCA=∠XMA/2 =54/2 =27


Или  проведем биссектрису MD угла XMA. Биссектрисы внутренних углов при параллельных перпендикулярны, MD⊥AX. Биссектриса MD является высотой, следовательно и медианой. MD - средняя линия в треугольнике CAX, MD||CX. ∠XCA=∠DMA как соответственные. ∠XMA=∠CAB как накрест лежащие при XM||AB. ∠XCA=∠XMA/2=∠CAB/2=27


Биссектриса внешнего угла a пересекает прямую, содержащую среднюю линию треугольника abc, параллельн
Биссектриса внешнего угла a пересекает прямую, содержащую среднюю линию треугольника abc, параллельн
4,6(6 оценок)
Ответ:
KingTheCat
KingTheCat
10.07.2022

∠YAC - внешний угол, M - середина AC

∠YAX=∠MAX (AX - биссектриса ∠YAC)

∠YAX=∠MXA (накрест лежащие при XM||AB)

∠MAX=∠MXA => △XMA - равнобедренный, XM=MA

XM=MC, △XMC - равнобедренный => ∠XCA=∠MXC

∠XMA=2∠XCA (внешний угол равен сумме внутренних, не смежных с ним)

∠XMA=∠CAB=54 (накрест лежащие при XM||AB)

∠XCA=∠XMA/2 =54/2 =27


Или  проведем биссектрису MD угла XMA. Биссектрисы внутренних углов при параллельных перпендикулярны, MD⊥AX. Биссектриса MD является высотой, следовательно и медианой. MD - средняя линия в треугольнике CAX, MD||CX. ∠XCA=∠DMA как соответственные. ∠XMA=∠CAB как накрест лежащие при XM||AB. ∠XCA=∠XMA/2=∠CAB/2=27


Биссектриса внешнего угла a пересекает прямую, содержащую среднюю линию треугольника abc, параллельн
Биссектриса внешнего угла a пересекает прямую, содержащую среднюю линию треугольника abc, параллельн
4,6(21 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ