Геометрия - важный раздел математики. Ее возникновение уходит в глубь тысячелетий и связано прежде всего с развитием ремесел, культуры, искусств, с трудовой деятельностью человека и наблюдением окружающего мира. Об этом свидетельствуют названия геометрических фигур.
Например, название фигуры "трапеция" происходит от греческого слова "трапезион" (столик) , от которого произошли также слово "трапеза" и другие родственные слова. От греческого слова "конос" (сосновая шишка) произошло название "конус", а термин "линия" возник от латинского "линум" (льняная нить) .
Геометрические знания широко применяются в жизни - в быту, на производстве, в науке. При покупке обоев надо знать площадь стен комнаты; при определении расстояния до предмета, наблюдаемого с двух точек зрения, нужно пользоваться известными вам теоремами; при изготовлении технических чертежей - выполнять геометрические построения. И если ты, юный читатель, хорошо изучил курс геометрии, то не останешься безоружным, когда при решении практических задач потребуется применить геометрические теоремы или формулы.
Геометрия — важный раздел математики. Ее возникновение уходит в глубь тысячелетий и связано прежде всего с развитием ремесел, культуры, искусств, с трудовой деятельностью человека и наблюдением окружающего мира. Об этом свидетельствуют названия геометрических фигур.
Например, название фигуры «трапеция» происходит от греческого слова «трапезион» (столик) , от которого произошли также слово «трапеза» и другие родственные слова. От греческого слова «конос» (сосновая шишка) произошло название «конус» , а термин «линия» возник от латинского «линум» (льняная нить) .
Геометрические знания широко применяются в жизни — в быту, на производстве, в науке. При покупке обоев надо знать площадь стен комнаты; при определении расстояния до предмета, наблюдаемого с двух точек зрения, нужно пользоваться известными вам теоремами; при изготовлении технических чертежей — выполнять геометрические построения. И если ты, юный читатель, хорошо изучил курс геометрии, то не останешься безоружным, когда при решении практических задач потребуется применить геометрические теоремы или формулы.
2) Так как касательные проведены из одной точки, то отрезок, соединяющий центр окружности и точку пересечения касательных ( в нашем случае этот отрезок OH) является биссектрисой угла AHB . Поэтому ∠AHO = ∠AHB / 2 = 85° / 2 = 42.5°.
3) Сумма двух острых углов в прямоугольном треугольнике равна 90°. То есть ∠AOH + ∠AHO = 90°. ∠AOH = 90° - ∠AHO = 90° - 42.5° = 47.5°
Треугольники AOH и BOH равны ( OH общая сторона. ∠AHB = ∠OHB . AH = BH - как отрезки касательных проведённых из одной точки)
Поэтому ∠AOH = ∠BOH = 47.5°
Тогда ∠ AOB = ∠AOH + ∠BOH = 95°
Треугольник AOB равнобедренный так как OA = OB - как радиусы.Поэтому ∠ ABO = ∠ OAB = (180° - ∠ AOB) / 2.
∠ ABO = (180° - 95°) / 2 = 85° / 2 = 42.5°
ответ:∠ ABO = 42.5°