Дано: ABCD-трапеция, AB=CD, <A=<D=60? BC=6, AD=10/ Найти: P Решение.Проведем высоты из вершин C и B. обозначим BH и CN. HN=6, AH=ND=2 трапеция равнобедренная. В треугольнике ABH <A=60 <ADH=30 катет лежащий против угла в 30 равен половине гипотенузы значит AB=4 тогда CD=4 P=AB+BC+CD+AD=4+6+4+10=24
Пусть острый угол параллелограмма равен х°, тогда тупой угол параллелограма равен 180-х°, а угол между высотами параллелограмма (180-х°):3= 60 -х/3.Проведем из вершины тупого угла высоты к сторонам параллелограмма( одна - к большей стороне, другая - к продолжению меньшей). Получаем два прямоугольный треугольника с острыми углами х° и 90-х°.Теперь при вершине тупого угла образовались три угла, составим уравнение:90-х° + 90-х°+60 -х/3= 180 -х-х-х/3 = -604/3 х= 60х=45?Значит, острый угол параллелограмма равен 45?, а тупой 135?ответ: два острых угла по 45?, и два тупых угла по 135?.
Пусть острый угол параллелограмма равен х°, тогда тупой угол параллелограма равен 180-х°, а угол между высотами параллелограмма (180-х°):3= 60 -х/3.Проведем из вершины тупого угла высоты к сторонам параллелограмма( одна - к большей стороне, другая - к продолжению меньшей). Получаем два прямоугольный треугольника с острыми углами х° и 90-х°.Теперь при вершине тупого угла образовались три угла, составим уравнение:90-х° + 90-х°+60 -х/3= 180 -х-х-х/3 = -604/3 х= 60х=45?Значит, острый угол параллелограмма равен 45?, а тупой 135?ответ: два острых угла по 45?, и два тупых угла по 135?.
Найти: P
Решение.Проведем высоты из вершин C и B. обозначим BH и CN. HN=6, AH=ND=2 трапеция равнобедренная. В треугольнике ABH <A=60 <ADH=30 катет лежащий против угла в 30 равен половине гипотенузы значит AB=4 тогда CD=4 P=AB+BC+CD+AD=4+6+4+10=24