Ромб - это параллелограмм, у которого все стороны равны (докажите сами). То есть ромб является параллелограммом.
<AOE = <ACB (как соответственные углы при ||-ных прямых OE и BC и их секущей AC).
Тогда треугольники ACB и AOE подобны по двум углам (<A=<A, <AOE=<ACB),
тогда их стороны пропорциональны, то есть:
AC/AO = BC/EO = AB/AE. (*)
Треугольники AOB и COD равны (докажите сами), тогда
AO = CO, тогда
AC/AO = (AO+CO)/AO = 2AO/AO = 2.
Тогда из (*):
2 = BC/EO, отсюда EO = (1/2)*BC,
Но у ромба все стороны равны, то есть BC = DC, поэтому
EO = (1/2)*BC = (1/2)*DC.
Ч. т. д.
Сторона равнобедренного треугольника (основание) может быть равна только 2 см. Объясню почему. Если мы нарисуем равнобедренный треугольник с основанием 6 см, то высота, опущенная из вершины этого треугольника разделит его основание на два равных отрезка, каждый по 3 см. А если рассмотрим полученные при этом два прямоугольных треугольника, то получится, что гипотенузы в них меньше их катетов, а этого быть не может. Следовательно, можем допустить только, что основание его равно 2 см. Следовательно другая строна равна 6 см.
a=3
b=9
c=10