угол MBC = 30°
угол ВCA = 60
Объяснение:
Дано:
АВС - треугольник
АМ = СМ
уг. АВС = 60°
уг. ВМА = 90°
-------------
Найти
уг. МВС - ?
уг. ВСА - ?
Решение
угол ВМА = 90° => уг. ВМС = 90°
т.е. ВМ | АС, а значит,
ВМ - высота, проведенная из вершины В на АС.
Также АМ = МС, а значит
ВМ - медиана, проведенная из вершины В на АС.
Если медиана треугольника является его высотой, то этот треугольник - равнобедренный.
ВМ - высота и медиана ∆АВС, =>
=> ∆АВС - равнобедренный, основание АС =>
=> ВМ - также является биссектрисой ∆АВС, т.е.
уг. АВМ = уг. СВМ
Так, как ∆АВС - равнобедренный, с основанием АС, то углы при основании - равны друг другу
уг. ВАС = уг. АСВ
и равны
угол ВАС = угол ВСА = 1/2 • (180 - угол АВС)
угол ВАС = угол ВСА = 1/2 • (180 - 60) = 60°
а значит ∆АВС - равносторонний.
угол MBC = 30°
угол ВCA = 60°
P=AD+BC+AB+CD
100=AD+BC+AB+CD
AD+BC=50
AB+CD=50 так как трапеция равнобедренная, то AB=CD=25
Sтр= (BC+AD)/2*h
500=50/2*h
h=20
BK=CF=h=20
CFD - прямоугольный по Пифагору найдем
FD=
AK=FD=15
BC=KF=x
x+x+15+15=50
2x=20
x=10
AD=35
треугольники BOC И AOD подобны, тогда
h1 =x
h2=20-x
x=6
x=h1=6 - искомое расстояние