Объяснение:
АВСД -прямоугольная трапеция ,ВС=4√2 , ∠А=45°, ∠Д=90°, АС-биссектриса ∠А.
1)Т.к АС-биссектриса, то ∠САД=∠САВ.
2)Т.к. АД║ВС ( основания трапеции), АС-секущая, то ∠ДАС=∠ВСА , как накрест лежащие. Значит в ΔАСВ есть два равных угла по 22,5° ⇒ ΔАСВ-равнобедренный и ВС=ВА=4√2.
3)Пусть ВК⊥АД, тогда ΔВКА-прямоугольный и равнобедренный , т.к. ∠КВА=90°-45°=45°. Обозначим равные катеты через х. По т. Пифагора :х²+х²=(4√2)², 2х²=16*2, х=4, КА=ВК=4.
3)Т.к. ВК⊥АД, то ДК=4√2.
4)ΔДВК-прямоугольный, по т. Пифагора ДВ²=КВ²+КД²,
ДВ²=16+16*2,
ДВ²=3*16
ДВ=4√3
Угло при нижнем основании равнобедренной трапеции меньше 90°, а при верхнем больше 90°, поэтому ∠A = 60° - угол основания.
Нам неизвестно какая сторона боковая, известно только то, что они смежные. Поэтому решим два варианта.
1. AB - нижнее основание.
H₁, H₂ ∈ AB; DH₁ , CH₂ ⊥AB ⇒ DH₁ ║ CH₂
ΔADH₁ = ΔCBH₂ - по гипотенузе и острому углу т.к. трапеция равнобедренная.
AH₁ = H₂B - как соответственные стороны равных Δ.
∠H₂CB = 90° - ∠CBH₂ = 90° - 60° = 30° - как острые улг. в прямоугольном Δ.
H₂B = BC/2 = 20/2=10 - как катет лежащей напротив угла в 30° в прямоугольном Δ.
H₁H₂ = 32 - 10*2 = 12 = т.к. DH₁ ║ CH₂ и DH₁ = CH₂ - как соответственные стороны равных Δ.
P - периметр.
P = AB+ 2BC + CD = 32 + 40 + 12 = 84.
ответ: 84.
2. AB - боковая сторона.
H₁, H₂ ∈ AD; BH₁ , CH₂ ⊥AD ⇒ BH₁ ║ CH₂ ⇒ BH₁ = CH₂ - как параллельные отрезки заключённые между параллельными прямыми, поэтому BCH₂H₁ - прямоугольник ⇒ H₁H₂ = BC = 20.
ΔABH₁ = ΔCDH₂ - по гипотенузе и острому углу т.к. трапеция равнобедренная.
AH₁ = H₂D - как соответственные стороны равных Δ.
∠ABH₁ = 90° - ∠BAH₁ = 90° - 60° = 30° - как острые улг. в прямоугольном Δ.
AH₁ = AB/2 = 32/2=16 - как катет лежащей напротив угла в 30° в прямоугольном Δ.
BC = AD т.к. BH₁ ║ CH₂ и BH₁ = CH₂ - как соответственные стороны равных Δ.
AD = 20 + 16·2 = 52
P - периметр.
P = 2AB + BC + DA = 64 + 20 + 52 = .
ответ: 136.
AK - биссектриса
BK=3x
KC=5x
5x-3x=6
2x=6
x=3
BK=3*3=9
KC=3*5=15
BC=15+9=24
по свойству биссектрисы
пусть AC=y, тогда AB=
по теореме Пифагора:
AB=6
AC=