АС и B1D1 - это скрещивающиеся диагонали противоположных граней (оснований), поэтому расстояние между ними равно высоте призмы (или боковым ребрам).
ВВ1 = 5;
Что касатеся основного вопроса задачи, то ответ лежит на поверхности. Нужно найти угол (косинус) между плоскостями, перпендикулярными ВD1 и ВВ1 (это - плоскость основания :)). Поскольку эти прямые пересекаются в точке В, нужный угол очевидно равен углу D1BB1 - как бы не была расположена плоскость сечения и как бы не был построен искомый линейный угол двугранного угла, его стороны будут перпендикулярны сторонам угла D1BB1 .
Осталось найти диагональ BD1
BD1^2 = 12^2 + 31 + 5^2 = 200; BD1 = 10√2;
cos(угол D1BB1) = В1В/D1B = 5/(10√2) = √2/4;
По теореме Пифагора
d ² = x² + x² = 2x² - диагональ основания
d = x√2
По теореме Пифагора
D² = x² + (x√2) ² - диагональ сечения
D² = x² + 2x²
D² = 3x²
Уравнение
2² = 3х²
х² = 4/3
х = √4/3 = 2/√3 =2√3/3