Докажем сначала, что это параллелограмм. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
Пусть точка О1(х;у) середина АС тогда
х=(-6+6)/2=0; у=(1-4)/2=-1,5.
Пусть точка О2(х;у) середина BD тогда
х=(0+0)/2=0; у=(5-8)/2=-1,5.
Значит О1 совпадает с О2 - значит ABCD параллелограмм.
О(0;-1,5) - точки пересечения его диагоналей.
Докажем что это прямоугольник. Если диагонали параллелограмма равны то он прямоугольник.
АС^2=(6+6)^2+(-4-1)^2
АС^2=12^2+(-5)^2
АС^2=144+25
AC^2=169
AC=13
BD^2=(0+0)^2+(-8-5)^2
BD^2=0^2+(-13)^2
BD^2=0+169
BD^2=169
BD=13
AC=BD
ABCD - прямоугольник
У вас получается 2 треугольника А1 К В1 и А2 К В2
Они подобны тк соотв признакам подобия, то есть имеют по паре одинаковых углов, в вашем случае можно сразу сказать. , что все углы равны, при К один для обоих треугольников и между прямой (любой из двух) из точки К и линиями соединяющими (А1В1 и А2В2) точки пересечения плоскостей, поскольку плоскости параллельны. Линии А1В1 и А2В2 так же параллельны. (см параллельность плоскостей)
A2B2 относится к A1B1, как 9 к 4, значит и другие стороны этих треугольников относятся друг к другу так же.
КВ1=8, значит КВ2 =8* 9/4= 18см
42
м
Объяснение:
Скорость точки
v = 16t - 4t²
В момент остановки v = 0
Найдём время движения до остановки
16t - 4t² = 0
4t (4 - t) = 0
t₁ = 0 - это момент начала движения
t₂ = 4 (c) - время движения до остановки
Путь, пройденный от начала движения до остановки вычисляется через интеграл