меньшее основание трапеции равно 5 см
большее основание равно 45 см
площадь трапеции равна 375 см2.
Объяснение:
Высоты трапеции BF и CE равны диаметру вписанной окружности.
Прямоугольные треугольники ABF и DCE равны.
По теореме Пифагора из треугольника ECD находим ED:
ED2=CD2−CE2;ED2=252−152;ED=252−152−−−−−−−−√;ED=20 см.
Так как в трапецию вписана окружность, то суммы противоположных сторон трапеции равны.
BC+AD=AB+CD;BC=FE, пустьBC=x, тогдаx+20+x+20=25+25;x=5.
BC= 5 см, AD= 20+5+20 = 45 см.
Площадь трапеции S= BC+AD2⋅EC=5+452⋅15 = 375 см2.
Основания трапеции равны 5 см и 45 см, площадь трапеции равна 375 см2.
О– точка пересечения диагоналей квадрата АВСD.
ОО1||AA1.
К– точка пересечения OO1 c СА1.
ОК– средняя линия треугольника АА1С
ОК=1/2
Проводим ОМ⊥AD.
Треугольник AOD – равнобедренный. ОМ – высота и медиана.
ОМ=1/2
АМ=MD.
Тогда МК⊥AD по теореме о трех перпендикулярах.
Докажем, что МК⊥СА1.
Так как АМ=МD и АА1=СD, то прямоугольные треугольники АА1М и МDC равны по двум катетам.
А1М=МС.
Значит треугольник А1МС – равнобедренный и МК медиана, а значит и высота.
МК⊥СА1.
Из прямоугольного треугольника МОК по теореме Пифагора
МК2= МО2+OK2
MK2=(1/2)2+(1/2)2
Mk2=1/2
MK=√2/2
О т в е т. √2/2.
AB =18 см ;
вписанный прямоугольник MNEF ( M∈[AC] , N∈ [BC] , E , F ∈ [ AB] ) .
a) MF : MN = 2 : 5 . MF =2x ; MN =5x ; P =2(MF+MN) =2(2x+5x) =14x.
В ΔAFM : AF =MF =2x ;
В ΔBEN : BE =NE =MF =2x ;
AF +FE +EB =18 см ; * * *FE=MN =5x * * *
2x +5x+2x =18⇒ x =2(см)
P =14x =14*2 см =28 см.
б) MF : MN = 5 : 2. MF =5x ; MN =2x ; P =2(MF+MN) =2(5x+2x) =14x.
5x +2x+5x =18⇒12x =18⇔x=1,5 (см) .
P =14x=14*1,5 см = 21 см .
ответ : 28 см , 21 см .