Допусти, что скорость 1-го бегуна = Х км/ч,
тогда скорость 2-го бегуна = Х+5 км/ч
Поскольку в задании сказано, что "Спустя один час, когда
первому из них оставалось 1 км до окончания первого круга, ему сообщили, что второй бегун первый круг 15 минут назад", значит 2-й бегун пробежал первый круг за время = 1 час - 15 минут = 45 минут
45 минут = 45/60 = 0,75 часа
Длина круга = скорость бегуна * время, которое потрачено на преодоление одного круга.
Поэтому Длина круга = скорость 1-го бегуна * время, которое потрачено на преодоление одного круга 1-м бегуном = (Х+5) * 0,75= 0,75Х + 3,75
Поскольку в задании сказано, что "Спустя один час, когда
первому из них оставалось 1 км до окончания первого круга..."
Значит Длина круга = скорость 2-го бегуна * время, которое потрачено 2-м бегуном + 1 км, который оставался до окончания первого круга= Х * 1 +1 = Х+1
Поэтому сможем составить уравнение:
0,75Х + 3,75 = Х+1
Х-0,75Х = 3,75-1
0,25Х = 2,75
Х=2,75/0,25
Х=11 - это скорость 1-го бегуна
Тогда скорость 2-го бегуна = Х+5 = 11+5=16 км/ч
ответ: скорость 2-го бегуна = 16км/ч
Рисунок - во вложении.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).