Обозначим параллелограмм ABCD, Высота, проведенная из вершины В, будет BK/ Треугольник ABD- равнобедренный, так как AK=KD=4 Следовательно AB=BD=5 По теореме Пифагора BK=√(25-16)=3 Sin A=BK/AB=3/5=0,6 <A=<C=Arcsin0,6 S=AD*BK=8*3=24 P=2(5+8)=26 <B=<D=180⁰-Arcsin0,6
Построим параллелограмм АВСД проведем диагонали АС и ВД так что цент пресечения диагоналей О удален от стороны АВ на 2 см от стороны ВС на 3 см. Так как точка пресечения диагоналей является центром симметрии параллелограмма, то высота параллелограмма к стороне АВ равна 2*2=4 см, а к стороне ВС 3*2=6 см. Площадь параллелограмма равна S= a*h (где а – сторона h – высота проведенная к ней). Выразим из этой формулы строну а=S/h Сторона АВ=24/4=6 см Сторона ВС=24/6=4 см Периметр параллелограмма равен P=(a+b)*2 (где а и в стороны параллелограмма) P=(AB+BC)*2=(6+4)*2=20 см
Построим параллелограмм АВСД проведем диагонали АС и ВД так что цент пресечения диагоналей О удален от стороны АВ на 2 см от стороны ВС на 3 см. Так как точка пресечения диагоналей является центром симметрии параллелограмма, то высота параллелограмма к стороне АВ равна 2*2=4 см, а к стороне ВС 3*2=6 см. Площадь параллелограмма равна S= a*h (где а – сторона h – высота проведенная к ней). Выразим из этой формулы строну а=S/h Сторона АВ=24/4=6 см Сторона ВС=24/6=4 см Периметр параллелограмма равен P=(a+b)*2 (где а и в стороны параллелограмма) P=(AB+BC)*2=(6+4)*2=20 см
Sin A=BK/AB=3/5=0,6 <A=<C=Arcsin0,6
S=AD*BK=8*3=24
P=2(5+8)=26
<B=<D=180⁰-Arcsin0,6