1) Найдем площадь боковой грани пирамиды. Эта боковая грань - трапеция с основаниями 10 и 8.
Найдем ее высоту. Из середины стороны верхнего основания опустим перпендикуляр на плоскость нижнего основания. Соединим основание перпендикуляра с серединой соответствующей стороны нижнего основания. Получим прямоугольный треугольник, в котором гипотенуза будет нужной нам высотой, и ее нужно найти.
2) Один из катетов равен высоте пирамиды, а другой равен (10-8)/2=1, так как сторона верхнего основания на 2 меньше стороны нижнего, а центры верхнего и нижнего оснований совпадают.
3) По теореме Пифагора, гипотенуза треугольника с катетами 1 и корень из 3 равна 2, тогда высота трапеции равна 2, а ее основания - 8 и 10.
4) Тогда площадь трапеции равна 2*(10+8)/2=18.
5) Мы нашли площадь одной грани, площадь боковой поверхности в 4 раза больше, так как граней 4, и она равна 18*4=72.
Согласно свойств медиан треугольника -медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины.
Значит АО/ОЕ=2/1, ОЕ=АО/2
АЕ=АО+ОЕ=АО+АО/2=3АО/2,
АО=2АЕ/3=2*9/3=6
Найдем площадь ΔАСД, в котором АО является высотой (с-но условия):
Sасд=АО*СД/2=6*5/2=15
Т.к. медиана разбивает треугольник на 2 треугольника одинаковой площади, то площадь ΔАВС равна:
Sавс=2Sасд=2*15=30