Объяснение:
Окружность с центром в точке А и радиусом 3 см имеет с прямой BС две общие точки. Не верно.
Поскольку прямая расстояние от центра окружности А до стороны ВС, больше радиуса окружности r<AC, r<AB, то прямая и окружность не имеют общих точек.
Окружность с центром в точке А и радиусом 8 см имеет с прямой ВС одну общую точку. Верно.
Если расстояние от центра окружности до прямой равно ее радиусу, то прямая и окружность имеют одну общую точку касания.
Окружность с центром в точке В и радиусом 17 см имеет с прямой АС две общие точки. Не верно
Поскольку радиус окружность равен гипотенузе r=AB, то А∈окружности. Остальные точки АС не имеют с окружностью общих точек, поскольку меньше радиуса окружности.
Окружность с центром в точке В и радиусом 9 см имеет с прямой AС одну общую точку. НЕ ВЕРНО
Поскольку расстояние от точки В до АС от 15 см до 17 см, то окружность с АС не имеет общих точек.
В приложении есть рисунки для демонстрации утверждений.
Подробнее - на -
Высота делит гипотенузу на отрезки с₁ и с₂.
По условию с₁-с₂=3, с₁=3+с₂
h²=c₁*c₂=(3+c₂)*c₂
4=3c₂+c₂²
D=9+16=25
c₂=(-3+5)/2=1
c₁=4
Гипотенуза с=1+4=5
Катет а²=с₁²+h²=16+4=20, а=2√5
Катет b²=с₂²+h²=1+4=5, b=√5
Радиус вписанной окружности R=(a+b-c)/2=(2√5+√5-5)/2=(3√5-5)/2
Площадь круга S=πR²=π*(3√5-5)²/4=2,5π*(7-3√5)