Втреугольнике авс со сторонами ав=5 см, вс=8см, ас=9см вписан окружность , касающая стороны ас к точке к. найдите расстояние от точки к до точки м биссектрисы вм.
Центр вписанной в треугольник окружности лежит в точке пересечения О биссектрис этого треугольника. Касательная АС к окружности перпендикулярна к радиусу ОК, проведенному в точку касания К. Полупериметр ΔАВС р=(АВ+ВС+АС)/2=(5+8+9)/2=11 Площадь по ф.Герона S=√11(11-5)(11-8)(11-9)=6√11 Высота АВС ВН=2S/AC=2*6√11/9=4√11/3 Из прямоугольного ΔАВН АН=√АВ²-ВН²=√(25-176/9)=√49/9=7/3 Расстояние от К до прямой ВМ - это перпендикуляр ОК. Значит прямоугольные ΔВНМ и ОКМ подобны по 2 углам (угол М - общий, углы ВНМ и ОКМ -прямые) ВН/ОК=НМ/КМ КМ=ОК*НМ/ВН Радиус ОК=S/p=6√11/11=6/√11 По свойству биссектрисы АВ/АМ=ВС/МС АМ=АВ*МС/ВС=5МС/8 АС=АМ+МС=5МС/8+МС=13МС/8 МС=8АС/13=8*9/13=72/13 АС=АН+НМ+МС=7/3+НМ+72/13=307/39+НМ НМ=9-307/39=44/39 Итого КМ=6/√11*44/39 / 4√11/3=6/13
ИЛИ Красный сегмент подобен синему (по равенству углов). Отношение площадей подобных фигур равно квадрату коэффициента подобия. Коэф. подобия в данном случае равен отношению стороны квадрата к его диагонали, то есть √2. Следовательно, площадь синего сегмента в 2 раза больше площади красного. "Цветок" состоит из 8 красных сегментов. "Внешняя часть" состоит из 4 синих сегментов. Равенство площадей очевидно.
Есть страшное решение... Итак, ∠АСВ=30° пусть СД=ДВ = 1 В прямоугольном треугольнике АСК катет АК обозначим как х, гипотенуза АС будет в два раза больше катета, противолежащего углу в 30°, 2х катет АК = х+1 по Пифагору x^2+(x+1)^2 = 4x^2 2x^2-2x-1 = 0 x₁ = 1/2 - √3/2 - отбросим как отрицательное x₂ = 1/2 + √3/2 - а это хороший корень Теперь треугольник АКД Найдём его гипотенузу АД x^2 + x^2 = AD^2 AD^2 = 2*(1/2 + √3/2)^2 = 2*(1/4+2√3/4+3/4) =2*(1+√3/2) = 2+√3 AD = √(2+√3) Теперь треугольник АКВ. В нём КВ = х-1 = -1/2+√3/2 Найдём его гипотенузу АВ (1/2 + √3/2)^2 + (-1/2+√3/2)^2 = AВ^2 1/4+2√3/4+3/4 + 1/4-2√3/4+3/4 = АВ^2 1+1 = АВ^2 АВ = √2 И финальный удар, треугольник АВД, все три стороны нам известны, теорема косинусов для нахождения ∠ВАД = f ДВ^2 = АВ^2 + АД^2 - 2*АВ*АД*соs f 1 = 2 + 2+√3 - 2*√2*√(2+√3)*cos f 3+√3 = 2*√(4+2√3) cos f 3+√3 = 2√(1^2 + 2√3 + (√3)^2) cos f 3+√3 = 2√((1 + √3)^2) cos f 3+√3 = 2(1 + √3) cos f cos f = (3+√3) / (2(1 + √3)) = 1/2 ((3+√3) / (1 + √3)) = 1/2 ((3+√3) *(1 - √3)/ (1 + √3)*(1 - √3)) = 1/2 (3+√3-3√3-3)/(1-3) = 1/2 * 2√3 /2 = √3/2 cos f = √3/2 f = π/6 = 30° И это ответ
Касательная АС к окружности перпендикулярна к радиусу ОК, проведенному в точку касания К.
Полупериметр ΔАВС р=(АВ+ВС+АС)/2=(5+8+9)/2=11
Площадь по ф.Герона S=√11(11-5)(11-8)(11-9)=6√11
Высота АВС ВН=2S/AC=2*6√11/9=4√11/3
Из прямоугольного ΔАВН АН=√АВ²-ВН²=√(25-176/9)=√49/9=7/3
Расстояние от К до прямой ВМ - это перпендикуляр ОК.
Значит прямоугольные ΔВНМ и ОКМ подобны по 2 углам (угол М - общий, углы ВНМ и ОКМ -прямые)
ВН/ОК=НМ/КМ
КМ=ОК*НМ/ВН
Радиус ОК=S/p=6√11/11=6/√11
По свойству биссектрисы АВ/АМ=ВС/МС
АМ=АВ*МС/ВС=5МС/8
АС=АМ+МС=5МС/8+МС=13МС/8
МС=8АС/13=8*9/13=72/13
АС=АН+НМ+МС=7/3+НМ+72/13=307/39+НМ
НМ=9-307/39=44/39
Итого КМ=6/√11*44/39 / 4√11/3=6/13