Так, прийдется и мне вмешаться. стороны и диагональ прямоугольника образуют прямоугольный треуг. с углами 30 и 60 градусов. если взять сторону против угла между диагонялями в 60 градусов, то по т. синусов другая сторона равна
если взять сторону против угла между диагоналями в 120 градусов, тогда другая сторона =
Прямая А1В - это диагональ боковой грани (в данной задаче - квадрата), наклонена к основанию под углом 45 градусов. Обозначим сторону основания и боковые рёбра за х. Прямая L представляет собой гипотенузу в равнобедренном прямоугольном треугольнике с катетами по х/3 (это из свойства точки пересечения медиан равностороннего треугольника). Тогда (х/3)² + (х/3)² = 4². 2х²/9 = 16, х² = 9*8 = 72. х = √72 = 6√2 см. Периметр основания Р = 3х = 3*6√2 = 18√2 см. Площадь основания So = x²√3/4 = 72√3/4 = 18√3 см². Площадь боковой поверхности Sбок = РН = 18√2*6√2 = 216 см². Полная поверхность призмы равна: S = 2So + Sбок = 2*18√3 + 216 = 36(√3+6) ≈ 278,3538 см².
Когда нам дано, что подобны треугольники, то, чтобы записать пропорциональность сторон, имеется два 1)смотрим на рисунок и определяем пропорциональность исходя из признака. 2)если нам известно, что подобны такие-то треугольники, то это можно записать исходя из того, как записаны буквы. Т.к.никакого рисунка у нас нет и признак нам еще придется определить, то будем пользоваться вторым Т.к. подобны треугольники WMF и WAV, то записывается это так: WM/WA = MF/AV = WF/WV (заметьте здесь закономерность, если не заметили - спросите - объясню). Возьмем первую и третью дробь, т.к. там нам известно самое больше количество сторон: WM/WA = WF/WV WM=WA*WF/WV = 26*19/24,7 = 20(дм). Теперь определим признак подобия. Их всего 3: 1)Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. 2)Если угол одного треугольника равен углу другого треугольника, а стороны, образующие этот угол в одном треугольнике, пропорциональны соответствующим сторонам другого, то такие треугольники подобны. 3)Если три стороны одного треугольника соответственно пропорциональны трем сторонам другого, то такие треугольники подобны
Ну 3 сразу отпадает, т.к. такого варианта ответа даже нет. Здесь подходит второй признак, т.к. нам дано по две стороны в каждом треугольнике, которые пропорциональны, значит скорее всего угол будет и там, и там равный. ответ: 4.
С вами был lovelyserafima, удачи! Не забывайте отмечать лучшим и оценивать ответ, если он вам понравился) Будут еще вопросы - задавайте;)
По Барсы со вторым решением!