Движение – отображение плоскости на себя, при котором расстояния между точками плоскости сохраняются.
Докажем, что поворот является движением, то есть, при повороте сохраняются расстояния между точками.
Возьмём две произвольные точки на плоскости: А и В. Выберем точку О – центр поворота и угол поворота α. При этом повороте точка А переходит в точку А1, точка В в точку В1.
По определению поворота: ОА = ОА1; ОВ = ОВ1; ∠АОА1 = α; ∠ ВОВ1 = α
Рассмотрим ∆АОВ и ∆А1ОВ1.
∠АОВ = α – ∠ВОА1; ∠А1ОВ1 = α – ∠ВОА1 ⇒ ∠АОВ = ∠А1ОВ1
и ОА = ОА1; ОВ = ОВ1.
Следовательно, треугольники равны по двум сторонам и углу между ними.
Раз треугольники равны, то равны соответственные стороны,
тогда АВ = А1В1.
Это и говорит о том, что расстояние между двумя точками при повороте осталось без изменения. Точки А и В выбраны произвольным образом, поэтому можно сделать вывод, что сохранятся расстояния между любыми двумя точками.
В прямоугольном треугольнике с углом 30 ° катет против этого угла в 2 раза меньше гипотенузы.
Так как биссектриса проведена из угла 60°, то треугольник МСЕ - равнобедренный с углами по 30°.
Значит, биссектриса равна отрезку СЕ = (2/3)*12 = 8 см.