Под фигурой будем понимать замкнутое множество на плоскости. Фигура F называется выпуклой, если отрезок, соединяющий любые две точки F, целиком лежит в F.
Пусть AB - диаметр F, т.е. AB - отрезок максимальной длины целиком содержащийся в F. Проведем через его концы перпендикулярные ему прямые. Тогда фигура F целиком лежит между ними (иначе AB не был бы диаметром F). Также проведем две прямые параллельные отрезку AB, так, чтобы F целиком лежала между ними, и будем сближать эти прямые до тех пор, пока они не коснутся F в точках C и D по разные стороны от AB (или, в крайнем случае, одной из них лежащей на AB). В результате мы получим, что фигура F заключена в прямоугольник, со сторонами а и b (AB=a) который, очевидно, является выпуклой центральнно-симметричной фигурой. В силу выпуклости F четырехугольник ACBD целиком лежит в F. Его площадь равна AB*h₁/2+AB*h₂/2=AB*(h₁+h₂)/2=ab/2, здесь h₁ и h₂ - расстояния от C и D до AB. Таким образом, S(F)≥S(ACBD)=ab/2, т.е. площадь прямоугольника, в котором содержится F, не превосходит удвоенной площади F.
P.S. Здесь мы неявно пользовались некоторыми фактами: 1) Выпуклая фигура, имеющая площадь - ограниченное множество. Действительно, если фигура имела точки не лежащие на одной прямой и была неограниченным множеством, то она содержала бы треугольник сколь угодно большой площади, т.е. не имела бы конечной площади. 2) В силу п.1) мы всегда можем поместить нашу фигуру между параллельными прямыми и по этой же причине (а также в силу замкнутости F и непрерывности длины) в нашей фигуре существует диаметр - отрезок максимальной длины.
В равнобедренном тр-ке АВС ∠ВАС=(180-120)/2=30°. Опустим высоту ВМ на сторону АС. АМ=МС. В тр-ке АВМ АМ=АВ·cos30=3√3 см. АС=2АМ=6√3 см. ВМ=АВ·sin30=3 cм. В тр-ке АВА1 ВА1²=АА1²+АВ²=8²+6²=100, ВА1=10 см. В тр-ке А1С1В проведём высоту ВК на сторону А1С1. ВК²=ВА1²-А1К². В прямоугольнике АСС1А1 А1К=АМ=3√3 см, значит ВК²=10²-(3√3)²=73, ВК=√73 см. а) Площадь сечения А1С1В: S=А1С1·ВК/2=6√3·√73/2=3√219 см² - это ответ. б) В тр-ке ВКМ МК⊥А1С1, ВК⊥А1С1, значит ∠ВКМ - угол между плоскостями А1С1В и АСС1 (А1С1 принадлежит обоим плоскостям) tg(BKM)=ВМ/МК=3/8 - это ответ.
Площадь треугольника равна половине произведения длины высоты на длину основания, к которому она проведена. S=h•a Центр описанной вокруг треугольника окружности лежит в точке пересечения срединных перпендикуляров, эта точка лежит на высоте ВН треугольника АВС. ВК - продолжение ВН - диаметр, Диаметр - хорда. АС - хорда. Н - точка их пересечения. По свойству пересекающихся хорд АН•AC=BH•KH Пусть ОН=х Тогда ВН=10+х, КН=10-х ⇒ 36=(10+х)•(10-x) по формуле сокращенного умножения 36=100-х²⇒ х²=64 х=8 см ВН=10+8=18 см S=18•12:2=108 см²
Пусть AB - диаметр F, т.е. AB - отрезок максимальной длины целиком содержащийся в F. Проведем через его концы перпендикулярные ему прямые. Тогда фигура F целиком лежит между ними (иначе AB не был бы диаметром F). Также проведем две прямые параллельные отрезку AB, так, чтобы F целиком лежала между ними, и будем сближать эти прямые до тех пор, пока они не коснутся F в точках C и D по разные стороны от AB (или, в крайнем случае, одной из них лежащей на AB). В результате мы получим, что фигура F заключена в прямоугольник, со сторонами а и b (AB=a) который, очевидно, является выпуклой центральнно-симметричной фигурой. В силу выпуклости F четырехугольник ACBD целиком лежит в F. Его площадь равна AB*h₁/2+AB*h₂/2=AB*(h₁+h₂)/2=ab/2, здесь h₁ и h₂ - расстояния от C и D до AB. Таким образом, S(F)≥S(ACBD)=ab/2, т.е. площадь прямоугольника, в котором содержится F, не превосходит удвоенной площади F.
P.S. Здесь мы неявно пользовались некоторыми фактами:
1) Выпуклая фигура, имеющая площадь - ограниченное множество. Действительно, если фигура имела точки не лежащие на одной прямой и была неограниченным множеством, то она содержала бы треугольник сколь угодно большой площади, т.е. не имела бы конечной площади.
2) В силу п.1) мы всегда можем поместить нашу фигуру между параллельными прямыми и по этой же причине (а также в силу замкнутости F и непрерывности длины) в нашей фигуре существует диаметр - отрезок максимальной длины.