М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
диван111111
диван111111
26.07.2020 16:59 •  Геометрия

Апофема правильной шестиугольной пирамиды равна 5, а площадь круга, описанного около основания пирамиды равна 12pi. найдите радиус шара, вписанного в эту пирамиду.

👇
Ответ:
fheeubeujdshebj
fheeubeujdshebj
26.07.2020
В сечении правильной пирамиды, проведенном через апофемы  граней имеем равнобедренный треугольник с основанием 2а, а=R - b, a=R - R(1 - cos30).
Найдем R из соотношения S=12π=πR^2, R=√12=3,46.
a=3,46 - 3,46(1 - √3/2)=3,46(1 - 0,134)=3, 2a=6. Площадь этого Δ :
s=a*h, h^2=L^2 - a^2, s=a*√(25 -9=12. Радиус шара, вписанного в пирамиду 
равен радиусу вписанной в Δ окружности  r = s/p = 12/8= 1,5.
4,8(39 оценок)
Ответ:
06Sofa07
06Sofa07
26.07.2020
Пирамида SАВСДЕF c вершиной S, в основании - правильный шестиугольник АВСДЕF.
Высота пирамиды SH, апофема (высота боковой грани АSВ) пирамиды SK=5.
Т.к. площадь круга S=πR², то радиус  описанной  окружности  правильного  шестиугольника R=АН=ВН=√S/π=√12π/π=2√3, значит и сторона  шестиугольника АВ= R=2√3.
Радиус вписанной окружности в шестиугольник r=КН=АВ*√3/2=2√3*√3/2=3
Из прямоугольного ΔSKH найдем SH:
SH²=SK²-KH²= 25-9=16.
SH=4
Центр шара О, вписанного в пирамиду, лежит на высоте SH, а точка Р касания шара и боковой грани ASB лежит на апофеме SК. Радиус шара РО=ОН.
Прямоугольные ΔSOP (<SPO=<SKH=90°) подобен ΔSКН по острому углу (<S-общий).
SO/SК=PO/KH
SO=SH-OH=SH-PO=4-PO
(4-PO)/5=PO/3
12-3PO=5PO
PO=12/8=3/2=1,5
4,4(30 оценок)
Открыть все ответы
Ответ:
lizaaf
lizaaf
26.07.2020
У равнобедренного треугольника медиана к основанию будет и высотой и биссектрисой. Так как треугольник еще и равнобедренный, то углы при основании = 45 градусов, тогда:
1. Медиана = высота образует 2 равнобедренных прямоугольных треугольника. 2 стороны при основании равны и = 4 => основание исходного треугольника = 8 см. А стороны при основании = \sqrt{ 4^{2} + 4^{2} } = 4\sqrt{2} см
2. Аналогично первому случаю имеем основание 6 см, а стороны при основании 3 \sqrt{2}
3. диагональ прямоугольника образует 2 прямоугольных треугольника и является их гипотенузой. Катеты - стороны. По теореме Пифагора получаем \sqrt{8^{2} + 15^{2} } = \sqrt{289} = 17 см.
4. Трапеция равнобокая. Высота отсечет от нее прямоугольный треугольник с гипотенузой - боковой стороной = 5см и вторым катетом = (14-8)/2=3 см. Тогда высота трапеции = \sqrt{5^{2} - 3^{2} } = 4 см. 
4,6(97 оценок)
Ответ:
Snupian
Snupian
26.07.2020
Треугольник PQW не обязательно прямоугольный. По т. синусов для него получаем PW=2R·sin∠Q=20·sin∠Q, а по т. косинусов для него же
20²·sin²∠Q=16²+12²-2·16·12·cos∠Q. Решаем это уравнение, получаем cos∠Q=0 и cos∠Q=24/25. Т.е. в первом случае PQW - действительно прямоугольный (см. рис. 1), а второй случай также существует при выпуклом ABCD (см. рис. 2.)

Т.к. AB/PB=CB/QB=5/4, то треугольник ABC подобен треугольнику PBQ с коэффициентом подобия 5/4, откуда  AC=(5/4)·PQ=5*16/4=20 и AC||PQ. Аналогично, треугольник BCD подобен треугольнику QCW с коэффициентом 5, т.е. BD=5QW=5*12=60 и BD||QW, откуда угол между диагоналями ABCD равен  углу PQW. Площадь ABCD вычисляется по формуле (1/2)AC·BD·sin(∠PQW).
Значит, в случае, когда PQW - прямоугольный
S(ABCD)=(1/2)·20·60·sin(90°)=600.
Во втором случае
S(ABCD)=(1/2)·20·60·√(1-24²/25²)=168.

Точки p, q, w делят стороны выпуклого четырёхугольника abcd в отно- шении ap: pb=cq: qb=cw: wd=1: 4
Точки p, q, w делят стороны выпуклого четырёхугольника abcd в отно- шении ap: pb=cq: qb=cw: wd=1: 4
4,7(87 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ