Вообще есть формула, которая описывает зависимость радиуса вписанной в правильный треугольник окружности от стороны этого треугольника. Выводится так: Центр вписанной окружности - точка пересечения биссектрис. В правильном треугольнике биссектриса является по совместительству медианой и высотой, поэтому, когда мы проведем все 3 биссектрисы, то получим маленькие п\у треугольнички, один из катетов которых - половина стороны, другой - радиус вписанной окружности. Угол, лежащий напротив радиуса, равен 30 градусов (потому как биссектриса). Значит r = 1/2 стороны * tg 30 = 3 * 1/V3 = V3. Тогда площадь этого круга будет равна pi * rˆ2 = 3pi.
Площадь боковой поверхности конуса S = π * R * L, где R - радиус основания конуса, L - длина образующей конуса
В прямоугольном треугольнике AOB: высота конуса AO - катет радиус основания конуса BO - катет образующая конуса AB - гипотенуза ∠ABO = 74°
Катет BO прилежит к ∠ABO, найдем длину катета через косинус известного угла. Косинусом ∠ABO является отношения прилежащего катета BO к гипотенузе AB. По таблице Брадиса находим, что косинусу 74° соответствует величина 0,2756
cos(∠ABO) = BO / AB BO = AB * cos(∠ABO) BO = 28 * cos74° = 28 * 0,2756 = 7,7168 (см) R = 7,7168 (см)