Менша основа рівнобічної трапеції дорівнює 3 см, а її периметр дорівнює 42 см. діагональ трапеції є бісектрисою її тупого кута. знайти висоту трапеції.
Пусть наша трапеция АВСD c диагональю ВD. Тогда треугольник АВD равнобедренный с основанием ВD и сторонами АВ=АD (так как <ABD=<DBC (дано, что BD - биссектриса, а <BDA=<DBC как накрест лежащие при параллельных ВС и АD). Тогда Периметр трапеции равен ВС+3*АВ=42, отсюда АВ=13см В равнобокой трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований. Полуразность равна (13-3)/2=5 (так как АD=АВ). По Пифагору находим высоту трапеции: h=√(13²-5²)=√18*8=12 ответ: высота трапеции равна 12см.
1 Если известны величины двух углов произвольного треугольника (β и γ), то величину третьего (α) можно определить исходя из теоремы о сумме углов в треугольнике. Она гласит, что эта сумма в евклидовой геометрии всегда равна 180°. То есть для нахождения единственного неизвестного угла в вершинах треугольника отнимайте от 180° величины двух известных углов: α=180°-β-γ.2Если речь идет о прямоугольном треугольнике, то для нахождения величины неизвестного острого угла (α) достаточно знать величину другого острого угла (β). Так как в таком треугольнике угол, лежащий напротив гипотенузы, всегда равен 90°, то для нахождения величины неизвестного угла отнимайте от 90° величину известного угла: α=90°-β
Катеты есть среднее геометрическое (среднее пропорциональное) между гипотенузой и своей проекцией на гипотенузу. АВС прямоугольный треугольник; АВ (а), АС (b) катеты; ВС (с) гипотенуза; АК - высота; ВК проекция катета АВ на гипотенузу: ВК=10-3,6=6,4 см; СК - проекция катета АС на гипотенузу: СК=3,6 см; а^2=ВС*ВК; а=√6,4*10=8 см; b^2=ВС*СК; b=√10*3,6=6 см; r=(a+b-c)/2; r=(8+6-10)/2=2 см; r можно вычислить по другой формуле. r=S/p радиус вписанной окружности в произвольный треугольник; (эту формулу нужно знать обязательно); S для прямоугольного треугольника S=a*b/2 половина произведения катетов; р полуперимтр; р=Р/2 ( Р периметр); P=a+b+c (a, b катеты; с гипотенуза); S=ab/2 : P/2=ab/2 * 2/P=ab/(a+b+c); S=8*6/(8+6+10)=48/24=2; ответ: 2
В равнобокой трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований. Полуразность равна (13-3)/2=5 (так как АD=АВ). По Пифагору находим высоту трапеции: h=√(13²-5²)=√18*8=12
ответ: высота трапеции равна 12см.