Через пересекающиеся прямые ав и вс, угол между которыми равен 60°, проведена плоскость α. через точку а параллельно прямой вс проведена плоскость β. угол между прямой ав и плоскостью β равен 30°. найти угол между плоскостями α и β, если ав=5/√3.
Вопрос задачи - найти величину двугранного угла. Двугранный угол измеряется величиной его линейного угла. На рисунке это угол между перпендикулярами АР и АМ, возведенными из точки А к линии пересечения плоскостей, т.е. к ребру КН этого угла. Угол между прямой АВ и плоскостью β - это угол ВАН, т.е. угол между ВА и ее проекцией АН на плоскость β. ВН ⊥ плоскости β, следовательно, ⊥ и прямой НМ, проведенной параллельно КН. Треугольник АВН - прямоугольный, угол НВА= 90º-30º=60º. ВН=АВ*sin 30º=(5:√3)*1/2=(5:√3)/2 Если плоскость α проходит через прямую a, параллельную плоскости β, и пересекает эту плоскость по прямой b, то b || a. ВС параллельна плоскости β, которая пересекает плоскость α по прямой КН ⇒ ВС и КН - параллельны. АР - общий перпендикуляр к ВС и КН, ⇒ треугольник АРВ - прямоугольный. АР=АВ*sin 60º=(5:√3)*√3):2=5/2 Из Р опустим перпендикуляр РМ на плоскость β РМ || ВН ⇒ РМ=ВН =(5:√3)/2 Треугольник РАМ - прямоугольный. АМ - проекция АР на плоскость β , АР⊥КН. По т. о трех перпендикулярах АМ ⊥ КН, ⇒ ∠ РАМ - линейный угол двугранного угла между плоскостями α и β. sin ∠РАМ = РМ:АР={(5:√3)/2 }:5/2=1/√3 =0,57735 ≈ 0,5774 По таблицам Брадиса это синус угла 35º16'
1. АС- диагональ. По свойству прямоугольника мы знаем, что диагонали равны => ВС=10,5. 2. По свойсву паралеллограмма мы знаем, чтр диагонали пересекаются и делятся пополам, в данном случае точкой О => ВО = 5,25 см, АО=5,25. 3. уголСАD = 30 гр. . Угол ВАD = 90 гр.. => ВАС= ВАD-CAD. BAC = 90-30=60 гр. 4. Т.К. ВО=АО, треуг. АВО - р/б => АВD= 60гр. 5. Сумма углов треугольника = 180 гр. => 180-АВD-BAC =BOA. 180-60-60= 60 гр. => АВО - р/с . 6. Т.К. АВО - р/с, АВ=АО=ВО. 7. А т.к. АО = ВО= 5.25 , АВ= 5.25 =>Р аво = 5.25+5.25+5.25= 15.75 ⬛
Двугранный угол измеряется величиной его линейного угла.
На рисунке это угол между перпендикулярами АР и АМ, возведенными из точки А к линии пересечения плоскостей, т.е. к ребру КН этого угла.
Угол между прямой АВ и плоскостью β - это угол ВАН, т.е. угол между ВА и ее проекцией АН на плоскость β.
ВН ⊥ плоскости β, следовательно, ⊥ и прямой НМ, проведенной параллельно КН.
Треугольник АВН - прямоугольный, угол НВА= 90º-30º=60º.
ВН=АВ*sin 30º=(5:√3)*1/2=(5:√3)/2
Если плоскость α проходит через прямую a, параллельную плоскости β, и пересекает эту плоскость по прямой b, то b || a.
ВС параллельна плоскости β, которая пересекает плоскость α по прямой КН ⇒
ВС и КН - параллельны.
АР - общий перпендикуляр к ВС и КН, ⇒ треугольник АРВ - прямоугольный. АР=АВ*sin 60º=(5:√3)*√3):2=5/2
Из Р опустим перпендикуляр РМ на плоскость β
РМ || ВН ⇒ РМ=ВН =(5:√3)/2
Треугольник РАМ - прямоугольный.
АМ - проекция АР на плоскость β , АР⊥КН.
По т. о трех перпендикулярах АМ ⊥ КН, ⇒
∠ РАМ - линейный угол двугранного угла между плоскостями α и β.
sin ∠РАМ = РМ:АР={(5:√3)/2 }:5/2=1/√3 =0,57735 ≈ 0,5774
По таблицам Брадиса это синус угла 35º16'