Втреугольнике авс ав = 2. из вершины в к стороне ас проведена медиана вд, длина которой равна 1. найти площадь треугольника авс, если вда = 30 градусов
Площадь треугольника определяется формулойS = (a*h)/2,где h - высота треугольника, a - основание, на которое опускается высота.Медиана образует новый треугольник ABD, в котором известны две стороны и один из углов. Применим теорему косинусовb^2 = a^2+c^2-2ac*cosβ,где неивзестна лишь величина c. решением получившегося квадратного уравнения будут два корня, один из которых отбрасываем, так как он отрицателен (длина не может быть отрицательной). Таким образом, длина основания a составляетa = 2*c = 2*1/2*(sqrt(3)+sqrt(15)) = (sqrt(3)+sqrt(15),где sqrt() - корень числа.теперь нужно найти высоту. Она лежит все в том же в треугольнике ABD и образует прямой угол с основанием. Таким образом, просто применяем формулу синуса угла, который нам известен и находим, что высота равнаsin 30 = h/BD,h = sin 30*BD = 1/2*1 = 1/2.Таким образом, площадь треугольника составляетS = 1/2*1/2*(sqrt(3)+sqrt(15)).S = (sqrt(3)+sqrt(15))/4.
Ну смотри: Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник. т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть: (10+18)/2*3=42. ответ:42