Длины диагоналей четырехугольника равны 24см и 36см . найдите периметр четырехугольника , вершинами которого служат середины сторон данного четырехугольника.
Пусть диагональ ВД=24 а АС=36 Точки M,N,K,L-середины сторон В треугольникеАВД ML-средняя линия -1/2ВД =24:2=12 аналогично NK=12 в тр АВС MN-средняя линия=KL=36:2=18 P=(12+18)x2=60
1) По правилу нахождения разности векторов, начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое). ОА-ОВ=ВА. По правилу нахождения суммы векторов, начало второго вектора совмещается с концом первого, сумма векторов есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом второго.ВА+АС=ВС. ответ:(OA-OB) +AC = ВС. 2) АВ-АО=ОВ (по правилу). ОВ-OD = DB (по правилу от конца вычитаемого к концу уменьшаемого). Или так: в параллелограмме точка пересечения диагоналей делит их пополам. Векторы ОВ и OD равны, но направлены в противоположные стороны, значит ОD = -OB и ОВ-OD = OB-(-ОВ) = 2ОВ =DB. ответ: (AB-AO)-OD = DB.