AM =(1/2)*√(2(AB²+.AC²) -BC² ) . Эту известную формулу для вычисления медианы можно было применить сразу . 5 =(1/2) *√(2(AB² +(4√2)²) - AB²)⇔4*25 =AB² +64 ⇒AB =BC=6 . Зная стороны треугольника можно вычислить ее площадь . здесь удобно S = 2S(ABM) =2√7*1*4*2 =4√14 (прим формула Герона).
Кратчайшим расстоянием от точки до прямой является длина перпендикуляра, опущенного из этой точки на эту прямую.
Расстоянием от точки М до прямой BC является длина перпендикуляра CM = 6 cм.
Если прямая (AB), проведенная на плоскости через основание (B) наклонной (МВ), перпендикулярна её проекции (CB), то она перпендикулярна и самой наклонной (теорема о трех перпендикулярах) ⇒ Расстоянием от точки М до прямой AB отрезок MB
Образовалась трапеция DAEC. Проведём отрезок из точки А в точку F, которая является серединой стороны CD.Соединим точки Е и F. Мы видим, что образовалось 4 равных треугольника. Докажем: Рассмотрим треугольники EBC, CEF, FEA, FAD. В них: 1). BE = CF = EA = FD (так как точки E и F - середины равных сторон параллелограмма ABCD, в котором AB = CD); 2). Так как BC || EF || AD (EF является средней линией параллелограмма ABCD) => у нас есть уже 2 маленьких равных параллелограмма: BCFE и FEAD. => угол В = углу D (противолежащие углы параллелограмма ABCD равны), а те углы равны углам CFE и AEF (противолежащие углы параллелограмма BCFE и AEFD равны). 3). Так как BC || EF || AD => угол BCE = углу = CEF = углу EFA = углу FAD (накрест лежащие). Значит, треугольники равны по стороне и двум углам. Теперь мы видим, что это действительно 4 равных треугольника. Надо найти площадь трапеции, которая равна трём этим треугольничкам. Значит, надо площадь параллелограмма разделить на количество образовавшихся равных треугольников: 32 : 4 = 8 см^2, умножить на три равных треугольника: 8 * 3 = 24 см^2. ответ: 24 см^2.
S=S(ABC) - ?
обозн. <AMB =α .
Из треугольника AMB по теореме косинусов:
AB² = AM² +MB² -2AM*MB*cosα ( 1) ;
аналогично из ΔAMB:
AC² =AM² +MC² -2AM*MC*cos(180° -α ) ⇔
AC² =AM² +MC² +2AM*MC*cosα (2) ;
складывая (1) и (2) получаем :
AB²+.AC² =2AM² + 2MB² ⇔ AB²+.AC² =2AM² + 2(BC/2)²⇒4AM²=2(AB²+.AC²) -BC² ;
AM =(1/2)*√(2(AB²+.AC²) -BC² ) . Эту известную формулу для вычисления медианы можно было применить сразу .
5 =(1/2) *√(2(AB² +(4√2)²) - AB²)⇔4*25 =AB² +64 ⇒AB =BC=6 .
Зная стороны треугольника можно вычислить ее площадь .
здесь удобно S = 2S(ABM) =2√7*1*4*2 =4√14 (прим формула Герона).
ответ : 4√14 кв. ед.