Объяснение:
прямоугольник ABCD
CD =
AD = 0,7
Найти:
BD — ?
https://tex.z-dn.net/?f=c%5E2%20%3D%20a%5E2%20%2B%20b%5E2%20%5C%5C%5C%5Cc%5E2%20%3D%20(%5Csqrt%7B0%2C95%7D)%5E2%20%2B%200%2C7%5E2%5C%5Cc%5E2%20%3D%200%2C95%20%2B%200%2C49%5C%5C%20c%5E2%20%3D%201%2C44%5C%5Cc%20%3D%20%5Csqrt%7B1%2C44%7D%5C%5Cc%20%3D%201%2C2
Так как ABCD — прямоугольник, то AB = CD = , AD = BC = 0,7.
BD — гипотенуза прямоугольного треугольника ABD, поэтому найдём её через формулу теоремы Пифагора.
По теореме Пифагора получаем:
Значит, BD = 1,2
Прямоугольные треугольники АКЕ, АКН равны по гипотенузе АК и острому углу. Значит KЕ=KH. (Признак равенства по гипотенузе и острому углу).
Прямоугольные треугольники НКВ и FКB равны по гипотенузе ВК и острому углу. Значит KF=KH. (Признак равенства по гипотенузе и острому углу).
KЕ=KH и KF=KH. Следовательно и KЕ=KF. Итак, доказано, что перпендикуляры КЕ, КН и КF равны.
Следовательно точка К равноудалена от прямых АВ, ВС и АD.
Что и требовалось доказать.