Объяснение:
Неверно:
1) Внешний угол треугольника меньше любого
внутреннего угла, не смежного с ним.
2) В равнобедренном треугольнике катеты равны.
3) Каждая сторона треугольника больше суммы двух других его сторон.
Верно:
а) В равностороннем треугольнике любая его высота делит треугольник на два равных треугольника
б) Внешний угол треугольника равен сумме двух
внутренних его углов, не смежных с ним
в) Гипотенуза прямоугольного треугольника больше катета
г) Каждая сторона треугольника больше разности двух других его сторон
УголА=90°
Объяснение:
в прямоугольном треугольнике сумма острых углов составляет 90°, поэтому второй острый угол равен 90–45=45°. Следовательно этот треугольник равнобедренный поскольку острые углы в нём равны и каждый составляет 45°, поэтому и катеты этого треугольника равны. Теперь выясним какой именно угол равен 90°. Так как катеты равны, то самая большая сторона - это гипотенуза.
ВС=8√6см. √6≈2,4, тогда ВС=8×2,4=19,2см, (ВС=19,2см > АВ=13см), значит ВС - гипотенуза, лежащая напротив прямого угла А, при этом АВ=АС - (катеты), уголВ=уголС=45°
AB(1;-2;3)
BC(2;2;-2)
AC(3;0;1)
Теперь мы можем найти длины сторон
|AB|=√(1+4+9)=√14
|BC|=√(4+4+4)=√12
|AC|=√(9+1)=√10
Теперь нам известны длины всех сторон треугольника
и поэтому мы можем найти угол через теорему косинусов
14=12+10-2√120cosα
2√120cosα=8
cosα=2/√30