Впрямоугольном треугольнике проведены три средние линии. найдите стороны и площадь этого треугольника, если площадь треугольника, образованного средними линиями, равна 60 см^2, а тангенс одного из острых углов равен 8/15.
Треугольник, образованный средними линиями подобен исходному( например, по трем углам, т.к. его стороны параллельны сторонам исходного, или по отношению сторон, т.к. средние линии равны исходным деленным на 2). Коэффициент подобия 2, так, что площадь исходного в четыре раза больше и равна 240 см.кв. В прямоугольном треугольнике площадь равна половине произведения катетов. Пусть катеты а и в. Имеем: ав=480 а=в *8/15. Значит а*а=480*15/8=900. Значит а=30 в= 16 . Квадрат гипотенузы равен 4*(225+64)=4*289 Гипотенуза равна 2*17=34 ответ: Площадь треугольника равна 240 кв. сантиметров, а стороны 30,16 и 34 см
Вариант 1, при АВ>BC. а) В ∆ АВС отрезок EF - средняя линия, так как соединяет середины сторон АВ и АС. ЕF параллельна ВС. Отрезок MD - секущая. Накрест лежащие углы при пересечении параллельных прямых секущей равны. ∠MDF=∠DMC. По свойству касательных из одной точки СМ=CN и ∆ МСN - равнобедренный и углы при его основании MN равны (свойство): ∠NMC=∠MNC. ∠MNC=∠FND (вертикальные). Отсюда ∠MDF=∠FND. Треугольник DFN- равнобедренный с основанием DN, FN=FD. Что и требовалось доказать.
б) В любом треугольнике расстояние от вершины треугольника до точки касания вписанной окружности со стороной треугольника, выходящей из данной вершины, есть разность полупериметра треугольника и стороны, противолежащей данной вершине: То есть CN = (AC + BC+AB)/2 - AB = (AC+BC-AB)/2. FN=FC-CN = AC/2 - (AC+BC-AB)/2 = AB/2-BC/2. Но FN = FD (доказано выше) и ED=EF+FD=EF+FN = BC/2+AB/2-BC/2=AB/2=BE. Треугольник BED равнобедренный. (ВЕ=ED). Проведем DK параллельно АВ. Тогда четырехугольник DEBK - ромб и его площадь равна S=BE²*Sin (ABC) = 100*√3/2 =50√3. Треугольник ВЕD - половина ромба ВЕDK и его площадь равна Sbed=25√3.
Для второго варианта, при АВ<ВС: а). EF параллельна ВС, MN - секущая. <NDF=<NMC (соответственные углы). СМ=CN (касательные из одной точки) => треугольник MNC равнобедренный и <NMC=<MNC (углы при основании). Отсюда <MNC=<NDF и треугольник DFN - равнобедренный с основанием ND. FN=FD. Что и требовалось доказать.
б). CN = (AC+BC+AB)/2 - AB = (AC+BC-AB)/2. FN=CN-CF = (AC+BC-AB)/2 - AC/2 - = BC/2-АВ/2. Но FN = FD (доказано выше) и ED=EF-FD=EF-FN = BC/2-BC/2+АВ/2=AB/2=BE. То есть треугольник BED равнобедренный. (ВЕ=ED). Проведем DK параллельно АВ. Тогда четырехугольник DEBK - ромб и его площадь равна S=BE²*Sin (ABC) = 100*√3/2 =50√3. Треугольник ВЕD - половина ромба ВЕDK и его площадь равна Sbed=25√3.
1. Дана окружность с центром в точке O. AB –диаметр, точка C отмечена на окружности,
угол A равен 470 . Найдите угол C и угол B.
2. AB и AC – отрезки касательных, проведенных к окружности радиуса 6 см. Найдите длинуOA и AC, если AB = 8 см.
3. Точки A и B делят окружность с центром O на дуги AMB и ACB так, что дуга ACB на 800меньше дуги AMB. AM – диаметр окружности. Найдите углы AMB, ABM, ACB.
4. Найдите радиус окружности, вписанной в треугольник, и радиус окружности, описанной около треугольника, стороны которого равны 16 см, 17 см и 17 см. Контрольная работа № 5 по теме: «Окружность» Вариант 2
1. Дана окружность с центром в точке O. AB –диаметр, точка C отмечена на окружности,
В прямоугольном треугольнике площадь равна половине произведения катетов. Пусть катеты а и в.
Имеем: ав=480 а=в *8/15.
Значит а*а=480*15/8=900. Значит а=30 в= 16 .
Квадрат гипотенузы равен 4*(225+64)=4*289
Гипотенуза равна 2*17=34
ответ: Площадь треугольника равна 240 кв. сантиметров, а стороны
30,16 и 34 см