Доказательство
1) Возьмем произвольную точку M на биссектрисе угла BAC, проведем перпендикуляр MK и ML к прямым AB и AC
Рассмотрим прямоугольные треугольники AMK и AML. Они равны по гипотенузе и острому углу. (AM - общая гипотенуза, ∠1∠2 по условию\). Следовательно, MKML
2) Пусть точка M лежит внутри угла BAC и равноудалена от его сторон AB и AC. Докажем, что луч AM - биссектриса угла BAC
Проведем перпендикуляры MK и ML к прямым AB и AC. Прямоугольные треугольники AMK и AML - равны по гипотенузе и катету (AM - общая гипотенуза, MKML по условию ). Следовательно, ∠1∠2. Но это и значит, что луч AM - биссектриса угла BAC. Теорема доказана
Р=22 = 2(а+б)
а+б=11 см
по теореме пифагора
а^2+b^2 = c^2=61
a=11-b
(11-b)^2 + b^2 = 121-22b+b^2+b^2 = 61
2b^2 - 22b + 60 = 0
b^2 - 11b + 30 = 0
b1=5
b2=6
S=5*6=30 кв см
2) S=a*b
стороны относятся как 2:3, значит a=2x , b = 3x
S=2x*3x=6x^2=54
x^2=9
x1=3,
x2=-3 <0 отбрасываем
Р=2(а+б) = 2(2х+3х)=2*5х=10х=10*3=30 см