Пусть х и у - длины смежных сторон искомого прямоугольника. Обозначим d - его диагональ, p - полупериметр. Тогда x+y=p и x²+y²=d². Т.е. х и у - абсцисса и ордината точки пересечения прямой и окружности, заданных этими уравнениями. Поэтому процесс построения выглядит так: 1) Строим прямой угол с вершиной О (он задает оси декартовой системы координат). 2) Строим окружность с центром в О и радиуса d (ее уравнение x²+y²=d²). 3) На сторонах прямого угла отмечаем точки A и B на расстоянии p от точки О и проводим прямую AB (уравнение этой прямой x+y=p. Заметим также, что ∠OAB=45°). Пусть C - какая-нибудь точка пересечения этой прямой с окружностью. 4) Опускаем перепендикуляр CD на ОА, и перпендикуляр CE на OB. Тогда прямоугольник OECD - искомый. Действительно, его диагональ OC равна радиусу окружности, т.е.равна d. Его полупериметр равен EC+CD=OD+DA=OA=p, т.к. CD=DA, поскольку ∠OAB=45°.
1. Опустим высоты ВН и СР.AD-BC=AH+PD.AB>AH (1) и CD>PD (2), ак гипотенузы прямоугольных треугольниковАВН и СDP. Сложив (1) и (2), имеем: АВ+CD>AH+PD.Что и требовалось доказать.2. В треугольниках HBD и PCA BD>HP+PD (1) и AC>HP+AH (2).Сложим (1) и (2): AC+BD>HP+PD+HP+AH, но НР=ВС и PD+HP+AH = AD.Тогда AC+BD>ВС+AD, что и требовалось доказать.3.AD-BC=AH+PD, но АН<AB, a PD<CD тогда тем более AD-BC<AB+СD.Что и требовалось доказать.4. Диагонали трапеции точкой их пересечения образуют два подобных треугольникаВОС и AOD с коэффициентом подобия k=BC/AD. Значит и диагонали точкой пересечения делятся в таком же отношении, а не пополам, что и требовалось доказать.
1) Строим прямой угол с вершиной О (он задает оси декартовой системы координат).
2) Строим окружность с центром в О и радиуса d (ее уравнение x²+y²=d²).
3) На сторонах прямого угла отмечаем точки A и B на расстоянии p от точки О и проводим прямую AB (уравнение этой прямой x+y=p. Заметим также, что ∠OAB=45°). Пусть C - какая-нибудь точка пересечения этой прямой с окружностью.
4) Опускаем перепендикуляр CD на ОА, и перпендикуляр CE на OB. Тогда прямоугольник OECD - искомый.
Действительно, его диагональ OC равна радиусу окружности, т.е.равна d. Его полупериметр равен EC+CD=OD+DA=OA=p, т.к. CD=DA, поскольку ∠OAB=45°.