Обозначим прямоугольник АВСД. Диагональ АС. На неё из вершины В опущен перпендикуляр ВК, и по условию АК=9, КС=16. ВК это общая высота в прямоугольных треугольниках АВК и СВК. Отсюда по теореме Пифагора АВ квадрат-АК квадрат=ВС квадрат-КС квадрат. Или АВ квадрат-81=ВС квадрат-256. Отсюда ВС квадрат=АВ квадрат+175. В треугольнике АВС также АВ квадрат+ ВС квадрат= АС квадрат. Или АВ квадрат+ВС квадрат=(9+16)квадрат. АВ квадрат+ ВС квадрат=625. Подставим сюда ранее найденное выражение для ВС квадрат и получим АВ квадрат+(АВ квадрат+175)=625. Отсюда АВ=15. ВК=корень из(АВ квадрат-АК квадрат)=корень из(225-81)=12. Искомый тангенс угла ВАК, tg=ВК/АК=12/9=4/3.
1. Пусть а и b - стороны прямоугольника.
2. Составим систему уравнений, в которой первое уравнение будет выражать периметр прямоугольника, а второе - площадь.
{ 2 • (a + b) = 22,
{a • b = 28.
3. В первом уравнении разделим обе части на 2.
{ a + b = 11,
{a • b = 28.
4. Выразим одну из строн в первогом уравнении, подставим во второе и решим его.
a = 11 - b,
(11 - b) • b = 28,
11b - b^2 = 28,
b^2 - 11b + 28 = 0,
b1 = 4, b2 = 7.
Выразим а через полученные значения b.
a1 = 11 - 4 = 7,
a2 = 11 - 7 = 4.
ответ: ширина прямоугольника равна 4, а длина - 7.