М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
NikolayNik12
NikolayNik12
02.11.2021 17:13 •  Геометрия

Сложить два вектора сил f1и f2,если первый из них направлен по горизонтали вправо, а второй образует с первым угол 120°модули векторов: f1=7h; f2=5 h

👇
Ответ:
Проекция второго на горизонталь = F2*cos30=5*0.87=4.35   F1-прF2=7-4.35=2.65
4,6(86 оценок)
Открыть все ответы
Ответ:
Ракита0
Ракита0
02.11.2021

Сделайте рисунок к задаче. Он может выглядеть как угол комнаты - отрезки направлены в разные стороны. 

Соедините концы отрезков А, В и С и проведите через них  плоскость (  Через любые три точки пространства, не лежащие на одной прямой, можно провести одну и только одну плоскость.)

Обратите внимание на то, что при соединении свободных концов отрезков получились три треугольника:АОВ, ВОС и АОС.

Отрезки прямых, соединяющие середины сторон АО, ВО и ВС, соответственно параллельны  сторонам АВ, ВС и АС как средние линии треугольников АОВ, ВОС и АОС. Проведенная через середины отрезков плоскость будет параллельна плоскости АВС :Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.

Что и требовалось доказать.

 



Отрезки оа, ов и ос не лежат в одной плоскости. докажите, что плоскость, проходящая через их середин
4,6(94 оценок)
Ответ:
элиза29с
элиза29с
02.11.2021

По 1 аксиоме Гильберта плоскость АВС существует, 
По 3 – М и К и , соответсвенно Х принадлежат этой плоскости . 

Аксиоматика Гильберта 

1. Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует плоскость α, которой принадлежат эти три точки. Каждой плоскости принадлежит хотя бы одна точка. 
2. Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует не более одной плоскости, которой принадлежат эти точки. 
3. Если две принадлежащие прямой a различные точки A и B принадлежат некоторой плоскости α, то каждая принадлежащая прямой a точка принадлежит указанной плоскости. 
4. Если существует одна точка A, принадлежащая двум плоскостям α и β, то существует по крайней мере ещё одна точка B, принадлежащая обеим этим плоскостям. 
5. Существуют по крайней мере четыре точки, не принадлежащие одной плоскости.

4,5(31 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ