М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ciropchik
Ciropchik
03.09.2022 06:55 •  Геометрия

Нужно построить. много ! даны высота, медиана и биссектриса треугольника из одной вершины. построить треугольник при циркуля и линейки.

👇
Ответ:
Алая5кровь
Алая5кровь
03.09.2022
1) На произвольной прямой f возьмем точку H и проведем к ней перпендикуляр BH равный высоте треугольника.
2) На этой же прямой f отложим точки M и N так, что BM равен медиане и BN равен биссектрисе (циркулем с острием в точке B). Заметим, что N лежит между M и H.
3) Через точку M проведем прямую g, перпендикулярную f.
4) Продолжим биссектрису BN до пересечения с g в точке K.
5) Построим серединный перпендикуляр к отрезку BK до его пересечения с прямой g в точке О.
6) Нарисуем окружность с центром О и радиусом OB до пересечения с исходной прямой f в точках A и С. Так построенный треугольник ABC является искомым.

Объяснение. Пусть ABC - произвольный треугольник. Если О - центр его описанной окружности, M - середина AС, K - точка пересечения прямой ОM с описанной окружностью, то  ∠KBA опирается на дугу AK и ∠KBС  опирается на дугу СК. Но дуги АК и СК сами равны, т.к. OK - серединный перпендикуляр к хорде AC. Значит, ∠KBA=∠KBС, т.е. КB - биссектриса угла ABC. Т.к. биссектриса единственна, то ее точка пересечения с серединным перпендикуляром к стороне AC есть К, т.е. лежит  на описанной окружности, причем делит дугу AC пополам.

Собственно отсюда и следует построение. На шагах 1)-4) строим точку К. После чего надо построить окружность, проходящую через точки K и B и центр которой лежит на прямой g. Это мы делаем на шагах 5)-6), проведя серединный перпендикуляр к хорде BK и найдя О. Эта окружность с центром О и есть описанная около треугольника ABC, т.е. ее пересечения с прямой f дают точки A и C.
4,6(88 оценок)
Открыть все ответы
Ответ:
Лейля16
Лейля16
03.09.2022
Правильная призма — это прямая призма, основанием которой является правильный многоугольник. В правильном шестиугольнике внутренние углы равны 120°. Плоскость ab1d1 - это сечение ab1d1e - прямоугольник.   Проведем диагональ с1f1. Это диаметр описанной вокруг правильного шестиугольника окружности и поэтому c1f1=2 (так как радиус равен стороне шестиугольника и равен 1). Диаметр c1f1 перпендикулярен хорде b1c1. 
В прямоугольном треугольнике h1c1d1 угол h1c1d1 равен 60°, а <h1d1c1=30°.
Следовательно, c1h1=1/2 (как катет против угла 30°, равен половине  гипотенузы - стороны шестиугольника).  Тогда h1f1=2-(1/2)=1,5.
Диагональ боковой грани по Пифагору ab1 = √(1+4) = √5.
А синус угла ab1a1 = aa1/ab1 = 2/√5 = 2√5/5.
В прямоугольном треугольнике f1hh1 искомое расстояние (перпендикуляр f1h) равно sinα*f1h1 = (2√5/5)*1,5 = 0,6√5.
ответ: расстояние от точки f1 до плоскости ab1d1 равно 0,6√5.

Правильная шестиугольная призма основание =1 боковое =2. найти расстояние от точки f1 до плоскости a
4,8(94 оценок)
Ответ:
unikkum22
unikkum22
03.09.2022
Второй признак равенства треугольников.
Теорема.
Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны. 

Доказательство.
Пусть у треугольников ABC и A1B1C1 ∠ A = ∠ A1, ∠ B = ∠ B1, AB = A1B1. 
Пусть A1B2C2 – треугольник, равный треугольнику ABC. Вершина B2 расположена на луче A1B1, а вершина С2 в той же полуплоскости относительно прямой A1B1, где лежит вершина С1. Так как A1B2 = A1B1, то вершина B2 совпадает с вершиной B1. Так как ∠ B1A1C2 = ∠ B1A1C1 и ∠ A1B1C2 = ∠ A1B1C1, то луч A1C2 совпадает с лучом A1C1, а луч B1C2 совпадает с лучом B1C1. Отсюда следует, что вершина С2 совпадает с вершиной С1. Треугольник A1B1C1 совпадает с треугольником A1B2C2, а значит, равен треугольнику ABC. Теорема доказана.
Сформулируйте и докажите теорему выражающую второй признак равенства треугальников
Сформулируйте и докажите теорему выражающую второй признак равенства треугальников
4,5(60 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ