Если нарисуем этот вписанный треугольник и проведем высоту, радиус нарисуем от угла основания треугольника к центру окружности, получится, радиус делит высоту на неравные части так, что верхняя часть высоты равна радиусу, а нижнюю можно найти по теореме Пифагора. высота в равнобедренном треугольнике также и медиана, и бисектрисса, поэтому у нас есть прямоугольный треугольник с катетом 4 (тот который является частью основания) и гипотенузой 5. по т. Пифагора второй катет будет 3. (тот который является нижней частью высоты). так как верхняя часть высоты равна радиусу=5, то вся высота=5+3=8. Площадь можно найти по формуле 1/2*высоту*основание=1/2*8*8=4*8=32
У равнобедренного треугольника углы при основании равны. Из вершины тупого угла опустим высоту на основание треугольника,которая также будет являться и медианой,и биссектрисой т.е. основание поделится по палам и каждая половина будет равна по 9 см,и угол из которого опущена высота тоже поделится по палам и эти два угла будут равны по 60 град. опустив высоту мы поделили тупоугольный треугольник на два прямоугольных треугольника. Два угла нам известны,они равны 60 и 90 град,найдем третий угол. Он равен 180-(90+60)=30. По свойству прямоугольного треугольника катет противолежащий углу 30 град равен 1/2 гипотенузы. Обозначим высоту за х-это и есть катет противолежащий углу 30 град,тогда гипотенуза равна 2х. По теореме Пифагора составим уравнение: 4x^2=81+x^2; 3x^2=81; x^2=27; x=3sqrt3- это и есть высота