Максимум .решите с рисунком.плоскость, параллельная стороне bc треугольника авс,пересекает сторону ав в точке р,а ас-в точке q.сторона ав равна 16см, а вс 10см.найдите: pq при условии,что ар: pb=3: 2; ар при условии,что pq: bc=1: 4
1. Луч-часть прямой, состоящая из данной точки и всех точек, лежащих по одну сторону от неё.(есть начало, нет конца). 2. Угол-часть плоскости между двумя линиями, исходящими из одной точки. 3. Снежный угол- называются два прилежащих угла, несовпадающие стороны которых образуют прямую. Вертикальные углы — пара углов, у которых вершина общая, а стороны одного угла составляют продолжение сторон другого угла 4. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
1) Если в треугольнике АВС даны не векторы, а координаты его вершин А(10;-2;8) В(8;0;7) С (10;2;8), то находим длины сторон: АВ = √((Хв-Ха)²+(Ув-Уа)²+(Zв-Zа)²)= √9 = 3, BC = √((Хc-Хв)²+(Ус-Ув)²+(Zс-Zв)²) =√9 = 3, AC = √((Хc-Хa)²+(Ус-Уa)²+(Zс-Zа)²) = √16 = 4. Периметр равен 3+3+4 = 10.
3. Если даны координаты точек: А(2;4;5) В(-3;2;2) С(-1;0;3), то вектор СА = (2+1=3; 4-0=4; 5-3=2) = (3; 4; 2), вектор ВС = (-1+3=2; 0-2=-2; 3-2=1) = (2; -2; 1).
Скалярное произведение а*c=ВС*СА a · c = ax · cx + ay · cy + az · cz = 6 - 8 + 2 = 0. Если скалярное произведение векторов равно нулю, то они перпендикулярны.
PQ параллельна BC
Получилось два подобных треугольника
ΔAPQ подобен ΔABC по трем углам:Угол BAC,угол APQ = ABC, угол AQP =ACB.Коэффициент подобия этих треугольников k = AP:(PB +AP) =
=3:(2 + 3) = 3:5
PQ = BC *k = 10 * 3:5 = 6 cм
2.Поскольку плоскость параллельна ВС, то прямая PQ параллельна ВС
PQ параллельна BC
Получилось два подобных треугольника
ΔAPQ подобен ΔABC по трем углам:угол BAC,угол APQ=ABC,
угол AQP = ACB.
коэффициент подобия этих треугольников К= PQ:BC = 1:4
АР = АВ *k = 16 * 1:4 = 4 см
Сорри за качество фотки.