М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Варя1001005
Варя1001005
20.12.2021 22:53 •  Геометрия

Два угла трапеции равны 120 и 80. найдите неизвестные углы

👇
Ответ:
ilmasha24
ilmasha24
20.12.2021
В трапеции две стороны ( как правило. это основания) параллельны. Боковые стороны  трапеции при  ее параллельных основаниях являются секущими. 
Если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180º.
Поэтому сумма  углов, которые  прилежат к боковым (не параллельным)  сторонам трапеции.  равна 180º.
120°+80° >180°, следоваетльно, эти углы прилежат к разным боковым сторонам
Отсюда второй угол, прилежащий к одной стороне,  равен 
180°-120°=60°
Второй угол, прилежащий к другой стороне, равен 
180°-80°=100°
ответ: углы 60° и 120°, 80° и 100°
Два угла трапеции равны 120 и 80. найдите неизвестные углы
4,5(83 оценок)
Открыть все ответы
Ответ:
Ми55555
Ми55555
20.12.2021
По условию задачи AB перпендикулярна BC, следовательно перпендикулярна и AD (т.к. в трапеции основания параллельны). Расстояние от точки Е до прямой CD - отрезок, перпендикулярный CD и проходящий через точку Е. Продолжим стороны AB и CD до пересечения в точке T. Проведем CK параллельно AB. KC=AB (т.к. ABKC - прямоугольник). KD=AD-AK=16-15=1 По определению косинуса: cos∠CDK=KD/CD=1/CD Рассмотрим треугольники TCB и CKD. ∠CTB=∠DCK (т.к. это соответственные углы при параллельных прямых TA и CK) ∠TBC=∠CKD=90° Следовательно, эти треугольники подобны (по первому признаку подобия). Тогда, BC/KD=TC/CD 15/1=TC/CD TC=15CD По теореме о касательно и секущей: TE2=TD*TC=(TC+CD)*TC=(15CD+CD)15CD=16CD*15CD=240CD2 TE=CD√240=4CD√15 Рассмотрим треугольники TEF и TAD. ∠CTB - общий ∠EFT=∠TAD=90° Следовательно, применив теорему о сумме углов треугольника, получаем, что ∠TEF=∠ADT. Следовательно, cos∠TEF=cos∠ADT. EF=TE*cos∠TEF=TE*cos∠ADT=TE/CD=4CD√15/CD=4√15 ответ: EF=4√15
4,5(77 оценок)
Ответ:
henrycarbone
henrycarbone
20.12.2021
В трапеции ABCD боковая сторона AB перпендикулярна основанию BC.
Окружность проходит через точки C и D и касается прямой AB в точке E.
Найдите расстояние от точки E до прямой CD, если AD=8, BC=4.

Есть 4 варианта расположения трапеции и окружности при данных
ВС и АD. (Представлены на рисунках).
Для всех четырех решение и результат одинаковы:
Искомое расстояние - это перпендикуляр EF к прямой CD.
По условию ВС - средняя линия треугольника ADS.
DC=SC, AB=BS. SD=2DC. Тогда по свойству касательной и секущей из
одной точки к окружности имеем:
SE² = SD*SC = 2DC²  или
SE = CD√2.
Прямоугольные треугольники HDC и FES подобны по острому углу <S=<C (так как НС параллельна AS).
Из подобия треугольников имеем:
EF/DH = SE/CD  => EF = DH*SE/CD.
EF=4CD√2/CD = 4√2.
Или так:
EF=SE*Sin(<ESF) =SE*Sin(<DCH).
<ESF=<DCH =α (соответственные углы в подобных треугольниках)
α= SE*Sinα
Sinα=HD/DC.
EF = SE*HD/CD.
Или так:
EF=SE*Cos(<SEF) =SE*Cos(<FDA).
<SEF=<FDA =β (соответственные углы в подобных треугольниках)
α= SE*Cosβ
Cosβ=HD/DC.
EF = SE*HD/CD.
Все эти варианты, в принципе, одно и то же.
ответ: EF= 4√2.

Так как решение при любых вариантах расположения окружности и
трапеции одинаково, можно привести решение подобных задач в общем
виде для разных значений ВС и AD.
Решение.
Пусть ВС= а, AD=b. AD>BC.
Прямоугольные треугольники HDC и FES подобны по острому углу
<S=<C (так как НС параллельна AS). Из подобия имеем:
EF/HD = SE/CD  => EF = DH*SE/CD.
Следовательно, чтобы найти EF, надо выразить DH, SЕ и CD через
основания трапеции ВС и AD.
DH=AD-BC = (b-a) (по условию).
Прямоугольные треугольники ASD и BSC подобны по общему острому углу
<S. Коэффициент подобия равен k=ВC/AD=a/b. Тогда
SC=CD*a/(b-a).
SD=SC+CD = CD*(a/(b-a)+CD = CD(a/(b-a) +1)= CD*b/(b-a).
По свойству касательной и секущей из одной точки к окружности имеем:
SE² = SD*SC.
SE² = SD*SC=CD*b/(b-a))*CD*a/(b-a) = CD²*a*b/(b-a)².
SE = CD*√(a*b)/(b-a).
EF=(b-a)*CD*√(a*b)/((b-a)*CD) = √(a*b).
ответ: расстояние от точки Е до прямой CD равно √(ВС*AD) для любых значений ВС и AD.
ЕF=√(ВС*AD).

P.S. для нашего случая ответ:
ЕF= √(4*8) = 4√2.

Втрапеции abcd боковая сторона ab перпендикулярна основанию bc. окружность проходит через точки c и
4,4(5 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ