Периметр параллелограмма abcd равен 48 см. угол а =60. к стороне ad провелен перпендикуляр bh, отрезок ah раен 3,5 см. найдите стороны параллелограмма!
Рассмотрим треугольник abh, у которого известны углы ahb=90 градусов и bah=60 градусов. найдем угол abh=180-(90+60)=30 градусов, это означает, что сторона ah будет в 2 раза меньше гипотенузы прямоугольного треугольника abh. 3.5·2=7 см. найдем сумму противоположных сторон ab и cd: 7+7=14 см. так как p=48, найдем решение задачи: (48-14)/2=17 см- стороны bc и ad
Так, ВН перпендикуляр. Значит треугольник АВН прямоугольный. угол Н - 90 градусов, угол А по условию 60 градусов. Значит угол АВН равен 180-90-60=30. Отрезок АН лежит напротив угла 30 градусов в прямоугольном треугольнике, и, значит, он равен половине гипотенузы. если он равенн 3,5, то гипотенузу треугольника, а равно и сторона параллелограмма равна 3,5*2=7. значит две стороны параллелограмма равны по 7 см. Отсюда вычисляем остальные. Из периметра вычитаем две по 7 (14) и делим пополам: (48-14)/2 = 17. стороны параллелограмма 7 и 17 см
а) Постройте плоскость, проходящую через точки K, L и М - для этого надо просто соединить эти точки.
б) Найдите угол между этой плоскостью и плоскостью основания АВС. Продлим отрезки КМ и KL до пересечения с плоскостью АВС. Для этого достаточно продлить стороны АС и АВ. Точки пресечения - это Д и Е. Примем длину отрезка АК за 1. Из треугольника АКД отрезок АД = 1 / tg 60 = 1 / √3. Аналогично АЕ = 1 / tg 45 = = 1 / 1 = 1. Угол ЕАД равен 60 градусов (по заданию). По теореме косинусов Находим гипотенузы в треугольниках АКД и АКЕ. КЕ = √(1²+1²) = √2 (острые углы по 45 градусов). Теперь определены 3 стороны в треугольнике КЕД, угол наклона которого к плоскости АВС надо найти. Для этого двугранный угол между основой и треугольником КДЕ надо рассечь плоскостью, перпендикулярной их линии пересечения ЕД. Находим высоты в треугольниках АЕД и КЕД по формуле: АЕ ДЕ АД p 2p S = 1 0.8694729 0.5773503 1.2234116 2.446823135 0.25 haе hде hад 0.5 0.57506 0.86603
КЕ ДЕ КД p 2p S = 1.4142136 0.869473 1.154701 1.719194 3.43839 0.501492 hке hде hкд 0.7092 1.15356 0.86861. Отношение высот hде и hде - это косинус искомого угла: cos α = 0.57506 / 1.15356 = 0.498510913. ответ: α = 1.048916149 радиан = 60.09846842°.
Пусть основание прямоугольного параллелепипеда прямоугольник ABCD . AB=CB =x ; BC=AD =7x ;AB₁ =BA₁ =CD₁=DC₁=13 см ;AD₁ =DA₁ =BC₁=CB₁ =37 см. обозн._ высота параллелепипеда AA₁ =BB₁ =CC₁ =DD₁ =h.
Sбок - ?
S бок =2(AB+BC)*AA₁ = 2(x+7x)*h =16xh. По теореме Пифагора для треугольников ABB₁ и ADD₁: { AB²+BB₁² =AB₁² ; AD² +DD₁²=AD₁². { x²+h² =13² ; (7x)² +h²=37². Вычитаем из второго уравнения системы первое (7x)² -x² =37² -13²; 48x² =(37-13)(37+13) ; 2*24x² =24*2*25⇒x =5 ; h =√(13² -5²) =12. S бок =16xh =16*5*12 =16*60 =960 (см²).